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ABSTRACT

A Finite Element - Boundary Integral Method for Electromagnetic Scattering

A method that combines the finite element and boundary integral techniques
for the numerical solution of electromagnetic scattering problems is presented. The
finite element method is well known for requiring a low order storage and for its
capability to model inhomogeneous structures. Of particular emphasis in this work
1s the reduction of the storage requirement by terminating the finite element mesh on
a boundary in a fashion which renders the boundary integrals in convolutional form.
The fast Fourier transform is then used to evaluate these integrals in a conjugate
gradient solver, without a need to generate the actual matrix. This method has a
marked advantage over traditional integral equation approaches with respect to the
storage requirement of highly inhomogeneous structures.

Rectangular, circular and ogival mesh termination boundaries are examined for
two-dimensional scattering. In the case of axially symmetric structures, the bound-

ary integral matrix storage is reduced by exploiting matrix symmetries and solving

the resulting system via the conjugate gradient method. In each case, several results
are presented for various scatterers aimed at validating the method and providing
an assessment of its capabilities.

Important in methods incorporating boundary integral equations is the issue of
internal resonance. A method is implemented for their removal, and is shown to be
effective in the two-dimensional and three-dimensional applications.
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CHAPTER 1

Introduction

Over the years, integral equation (IE) techniques have been employed for evalu-
ating the electromagnetic fields scattered from various structures. Special cases of
the IE methods are surface integral equation (SIE) methods and volume integral
equation (VIE) methods, which have been the workhorses in computational electro-
magnetics for the past two decades. They have been used to solve the scattering from
simple structures, such as smooth perfectly conducting bodies and homogeneous ma-
terial structures to more complicated ones such as multi-layered coated conductors.
However, the classical SIE and VIE techniques result in fully populated matrices
whose required storage is O(N?), where N is the number of unknowns in the model.
Consequently, as the size of the structure increases, the memory demand may be-
come much greater than the storage available on existing computing resources. To
circumvent this, the IE may be cast in convolutional form by a proper choice of the
discretization model. The resulting system can then solved via the conjugate gradient
method, using the fast Fourier transform (FFT) to evaluate the discrete integral op-
erator. The use of the FFT requires storage on the same order as the dimensionality
of the scattering body (i.e., O(NV}) for three-dimensional scatterers using VIE, where

N4 denotes the number of cells per dimension), but is still lower than that required



by the fully populated version. This method, referred to as the CGFFT method
has been recently employed by several authors to solve two-dimensional (2-D) and
three-dimensional (3-D) inhomogeneous scattering problems [1, 2, 3]. Nevertheless,
for 3-D applications the storage requirement remains problematic and furthermore,
rectangular grid meshing results in a stair-case approximation of otherwise smooth
scatterers.

In an effort to further reduce the storage requirement, partial differential equation
(PDE) methods were considered, since these methods provide for an O(N) storage
requirement. Among them are the finite difference (FD) methods [4] and finite ele-
ment (FE) methods [5]. Finite difference techniques typically suffer from the same
staircasing problems as the CGFFT methods and may have difficulties in modeling
numerical dispersion when solved in the time domain (TD). Frequency domain so-
lutions (of primary interest in this study) allow for accurate (conformal) modeling
of the scattering structure since, for instance, triangles and tetrahedrals can be used
for discretizing surfaces and volumes, respectively. However, when the finite element
method (or any other PDE method) is employed, the mesh must be truncated at a
distance from the structure on which an approximate or exact boundary condition
is applied.

Various methods for truncating the FE mesh have been employed. Among them
are the simple enforcement of an approximate absorbing boundary conditions (ABC)
at the mesh boundary and the unimoment method. The ABC’s are popular because
they result in a banded sub-matrix structure. However, they require additional
unknowns since the enclosure must be placed at a distance approximating the far
field region. This distance may be large for structures with sharp edges and as a

result a large number of unknowns is required, especially for 3-D applications. In the



unimoment method [6], the scattered field in the unbounded region is represented by
an eigenfunction expansion. The coeflicients of the expansion are then determined
by enforcing continuity at the circular mesh termination boundary. This method
produces a dense square sub-matrix whose dimension is proportional to the number
of modes. It also requires the truncation of an infinite series which may be slowly
convergent for irregular structures, thus resulting in a large storage requirement.

An exact termination method is the boundary integral equation, first introduced
by Hsieh [7} and McDonald and Wexler (8] in the early 1970’s. The method is
heretofore referred to as the finite element - boundary integral (FE-BI) technique
and is the subject of this thesis. The boundary integral equation employs the free-
space Green’s function which implicitly satisfies the radiation condition at infinity.
Since the integral equation is exact, the mesh termination boundary may be brought
very close to the scatterer to minimize the meshing of the free-space regions enclosed
by the termination boundary. The main drawback of the method is again the dense
submatrix structure associated with the boundary integral equation. However, by
carefully choosing the shape of the boundary, some of the boundary integral terms
are cast into convolution form. Thus, on employing a conjugate gradient solver,
these integral operators may be evaluated via the FFT as was done in the CGFFT
method. The required storage of the boundary integral is then reduced toward O(N)
and allows for the accurate solution of large inhomogeneous scatterers as well as small
targets.

In this thesis, the FE-BI technique (presented in general terms in chapter I1) is de-
veloped for two-dimensional and axial-symmetric structures. The two-dimensional
case is based on [9]. Chapter III contains a FE-BI formulation for rectangular enclo-

sures, leading to simple boundary integrals some of which have convolutional form,



thus leading to a reduction in the memory requirement. In chapter IV, circular and
ogival enclosures are considered. For the circular boundary, the boundary integral is
entirely convolutional in form and an O(N) storage requirement is thus achieved at
all times. Circular enclosures are consequently preferred for storage efficiency if the
structure’s outer boundary does not substantially deviate from a circle.

In chapter VI, the FE-BI formulation is developed for axially symmetric struc-
tures. The finite element method for this problem was originally developed by Mor-
gan and Mei using the coupled azimuthal potential (CAP) equations for generating
the FE matrix system. In that formulation, the unimoment method was employed for
terminating the mesh, whereas in our implementation the boundary integral equation
is instead employed for this purpose. It is related to Flemings implementation [10]
for circular boundaries, but the present formulation allows for an arbitrarily shaped
enclosure. Consequently the boundary integrals are no longer convolutional and the
storage reduction is in this case achieved by exploiting certain symmetry properties
of the boundary integral subsystem. A problem with the CAP equations is the pres-
ence of a singularity in the finite elements which tends to corrupt the solution, and
a method is presented for circumventing this difficulty.

A difficulty with most boundary integral formulations is the appearance of in-
ternal resonances which corrupt the solution. These resonances correspond to the
eigenvalues of the integral operator, and also occur at the same location as the cut-
off frequencies of a resonator with conducting walls of the same shape as the mesh
termination boundary and filled with the same material as the unbounded medium.
The resonances are particularly problematic when the structure becomes electrically
large, in which case the eigenvalues are very closely spaced. Without any correction,

computations for large structures are unreliable, and a method for correcting the



resonance problem is developed in chapter V.

Specific contributions of this work include the implementation of the FE~BI for
rectangular, circular and ogival boundaries as described in chapters III and IV in
a manner taking advantage of storage reduction schemes. A new method is also
presented for suppressing the resonance corruption problem existing in almost all
implementations employing some form of a boundary integral equation over a closed
surface or contour. This method involves the introduction of a complex wavenumber
and is demonstrated for both 2-D and axial-symmetric bodies. The implementation
of the FE-BI method for axially symmetric structures as described in chapter VI
is for the most part new and incorporates a scheme for treating the line singularity
associated with the CAP equations. This resulted in real matrices for lossless scat-
terers, a property consistent with 2-D and 3-D implementations of the finite element

method.



CHAPTER II

Fundamental Concepts

In this chapter, some basic concepts are presented as applied to electromagnetic
scattering and its computation via the FE-BI method. At the end of the chapter,

the conjugate gradient matrix solver is also appended.

2.1 Basic Electromagnetic Theory

The overall goal in any electromagnetic problem is the solution of Maxwell’s
equations subject to given boundary conditions. In the frequency domain, Maxwell’s

equations in free space are

VxE=—jwuH (2.1)
V x H = jweE (2.2)
V-(E)=0 (2.3)
V-(uH)=0 (2.4)
where
E(7) = electric field strength [Volts/meter] (2.5)
H(F) = magnetic field strength [Amperes/meter] (2.6)
€(T) = electric permittivity [Henrys/meter] (2.7)



#(T) = magnetic permeability [Farads/meter] (2.8)

Note that the last two equations, which are based on Gauss’ law, can be obtained by
taking the divergence of the first two equations. Thus for time harmonic fields, only
the first two of Maxwell’s equations are needed for a unique solution of £ and H.

By substituting (2.2) into (2.1) and vice versa, we obtain

1 — -
Vx—-VxE—-uwE =0 (2.9)
U
1 — -
Vx-VxH-uwuH=0 (2.10)
€
which are commonly referred to as the vector wave equations. They must be solved
and are subject to the boundary conditions on the particular scatterer as well as

the radiation condition. Typically when solving (2.9) and (2.10) for a piecewise

homogeneous scatterer, the following conditions must be explicitly imposed:
e Continuity of tangential £ and H
e Continuity of normal pH and €E
e Tangential £ = 0 on metallic surfaces

For radiation and scattering problems, the radiation condition must be also satisfied.
This condition assumes that the wave must be outwardly propagating and must
attenuate no slower than the inverse of the distance far from the source. Expressed

in mathematical terms,

lim[nH -7 xE] =0 (2.11)
rlirg[ﬁ— FxnH]) =0 (2.12)

where n = \/g is the impedance of unbounded medium and # is the unit radial vector

in spherical coordinates.



The media considered is this work is linear and isotropic and the material pa-
rameters p and e are often normalized to their free space (vacuum) values of ¢y ~
8.85 x 10712 H/m and po = 47 x 10~7 F/m. The relative constitutive parameters of

the medium will be denoted by

€

€ = — (2.13)
€o
U
r = — 2.14
= (2.14)

A fundamental solution of the wave equation is the plane wave

E(F) = e (2.15)

where k = w,/pie and w = 27 f is the frequency in rad/sec. For lossy media, y
and ¢ are complex and thus k = k., + jk;, implying an exponentially decaying field.
Note that the required condition, k; < 0, ensures that the wave does not grow
exponentially and, consequently, the imaginary part of ¢ and € must likewise be less

than zero.

2.2 The FE-BI Approach

To solve PDE’s (2.9) and (2.10), the scattering body is first enclosed in an artificial
surface S bounding a volume V and for this application all sources will be assumed
to reside in the unbounded region outside S. To satisfy Maxwell’s equations in this
volume, the vector wave equation for the electric field in (2.9) is discretized via the
method of weighted residuals. Though not given here, a similar approach in terms
of the magnetic field may developed in a parallel fashion.

The volume V is first divided into N, elements. Within each element, the

weighted residual expression is given by

‘///-W-:-(VX-IIIVXE—w?eE)dvzo (2.16)
Ve



where W¢ is the ith weighting function over the eth element. First, we temporarily

define A as
—_ 1 — -
A=-VxF (2.17)
7
and recall the identity
W, VxA=V- (AxW,)+A-VxW; (2.18)

Using this identity, the first term in (2.16) can be rewritten as

[[Jwi-vxFave = [[[v-@xwoave+ [[[7-vxWiave

Ve Ve Ve

= ﬁﬁe-(Zfo)dse+///z.vxwfdve
VC

(2.19)
where the last equality was obtained by invoking the divergence theorem and thus,
S5¢ is the surface enclosing V® and 7° is its outward unit normal. Substituting (2.19)

into (2.16) yields

/// [ SV xE)-(VxW)) _wch] dve = ;ffn : (%V x E) x W;dS* (2.20)

and upon rearranging this we have

/// [ SV X E)- (VX W) —w”ef] ave= ff W (e x Mass (221)
L

For scatterers comprised in part of conducting material, the surface boundary of
the volume V' is S = S, + S., where the subscript a denotes the exterior boundary
and the subscript ¢ denotes the conducting boundary. In the assembly of the finite
element equations, the fully discretized form of (2.21) is summed over all elements.
Since the tangential fields are continuous across material interfaces, the surface inte-
gral in (2.21) will cancel everywhere except on S, and S.. Thus, unless S¢ intersects

Sa or S, the surface integral may be removed.
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To construct a system of equations from (2.21), the field in element ¢ may be

represented as

E =3 Ni(z,y,2)E; (2.22)
j=1

AxE =Y axN(zy2)Er (2.23)
Jj=1

aAxH =) ax Ny, z)H* (2.24)
Jj=1

where the superscript ¢ denotes the tangent to the boundary of element e. (These
vector shape functions must also be chosen to satisfy the divergence condition given
by (2.3).) Substituting this expansion into (2.21) and using Galerkin’s approach (i.e.,

W; = N;) gives

fV;E;/V/cf%[(Vx‘ﬁf)-(Vxﬁj)—ijTv‘;]dve

=Y Hf ﬁ jwN; - (2° x N})dS* + 3 H' ﬁ jwiN; - (7° x N;)dS* (2.25)

J

j=1 Sc € Sa 1=1 Se € Sc
where k = wy/HE.

After summing over all elements, our system takes the form

: ]
. ) 1| {E2} -
Kb KX K}y KM K 0 0
{Eq}
Ko Ko K K&t K B 0
{Er}
Ky Ki, Ky K, Kr 0 =] 0 (2.26)
, {E2}
Kmm K™ Kn K K™ 0 0
{ES}
Ko K. K, K@ KI 0 B..H;
] | {H} ) )

In these the subscript a refers to unknowns on S,, ¢ refers to the set of unknowns on
Sc and I refers to the remaining unknowns. Furthermore, the superscripts n and ¢

refer to the normal and tangential components, respectively, of the weighting and/or
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testing functions. The application of the boundary condition on S, results in the

following system

: 1 | {E2} D
K™ KM K'Y KM 0 0 0
{£2}
K K% K Kt 0 B, 0
{Er} i}
Ky Kb, Ki Ki 0 0 =10 (2.27)
{£7}
K KM K& KM 0 0 0
{E2)
0o 0 0 0 I o0 0
) NRH o

Clearly, another equation is necessary relating E! and H! on S,. The FE-BI
approach employs the Stratton-Chu integral equation for the purpose. This equation

relates the electric and magnetic fields via the integral equation

ral yal P . Al I7/= e 1 Al 1 T /= ! = =/
EF@)=FE(F)+ ﬁ {—Jko[n X noH (T )]g(r,r )+ .]T{n VixnoH(T )]Vg(r,r )
0
+[i x B(7)] x V’g(F,F’)}dS’
(2.28)
where o = \/po/€o and g is the free space Green’s function. Evaluating this equation

on the surface S, and discretizing it, we obtain the subsystem
LB} + M {H}=U, (2.29)

which relates the tangential fields on S,. Combining (2.29) and (2.27) we obtain the
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block matrix

Kxr K Ky KXo o || {ED) 0 |

aa

K!» K& K! K% 0 B, {E!} 0
Kr K K Ki 0 0 E; 0
hoKl Kn K| {Er} | _ 230
K™ KM K% K™ 0 0 {E™) 0
0 0 0 0 I 0 {E!} 0

0 L, 0 0 0 M, || {H]} {U3}

which, after applying the condition on S, can be solved uniquely for the interior
and boundary fields. The resulting system is then solved via the conjugate gradient
method.

After the fields in the solution region have been determined, the scattered fields
are computed by evaluating the integral equation in the far zone. In particular a

quantity called the echowidth is computed for 2-D problems and is given by [11]

: |¢°|?
o= lim 2r .
p—+00 p|¢l|2

(2.31)
where p is the usual cylindrical coordinate and ¢ denotes either E. or H,. For three-
dimensional applications, the quantity of interest is the radar cross section (RCS)
and its expression is

o= lim 47rr2———|-Es(F)12

. 2.32
e B )P 232

where r is the radial spherical coordinate. Expressed in component form we have

2| Ep(7)?

TR P

(2.33)

where p and g represent the polarization of the scattered and incident fields, respec-

tively.
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2.3 The Conjugate Gradient Method

The CG algorithm is employed throughout this work and is given as follows for
solving the system Az = b.

Initialize the residual and search vectors

w=11¢n 0 0 ol 3=]b]?

s = Ag®
r) =p—s
s = Aer()
7 =slf
BO = 471
p(l) - 5(0)‘S
Iterate for k = 1,..., N,
s = Ap(k)
=13

k1) — ¢ + a(k)p(k)

AL (R (R ()

P

¥ = || rlE+1) “g

§ = Aar(k+l)

7= 1sl;

AW = 41

p(k+1) - p(k) + ﬂ(k)s(k)
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Terminate when k = N or \/?y-—: < tolerance.

The given tolerance must be used with caution. In each of the FE-BI techniques
developed, the excitation b is only partially full. If the simple preconditioner of divid-
ing by the diagonal value is employed, then those rows associated with an excitation
component of zero will consequently not scale the excitation. In other words for
those rows, b will not change in value while the matrix itself does. As a result, the
residual error will be scaled differently and, consequently, the tolerance criterion will
be scaled differently as well. This may lead to artificially small normalized resid-
ual errors and cause the convergence criterion to be satisfied before convergence is
actually achieved.

One way to avoid this is to compute the far field in terms of o at one or more
angles every few iterations and compare the current value to the previous one. When
the difference is sufficiently small for 15 or 20 consecutive iterations, convergence is

assumed to have been achieved.



CHAPTER III

A Finite Element — Boundary Integral
Formulation for Two-dimensional Scattering with
a Rectangular Termination Boundary

3.1 Introduction

In this section an FE-BI method is developed for two-dimensional scattering in
which the exterior boundary is rectangular in shape. This enclosure ensures some of
the boundary integral terms are convolutional and are therefore amenable to evalu-
ation via the FFT in the conjugate gradient solver. Results are presented for several

structures.

3.2 Analysis

Consider a cylindrical body of arbitrary cross-section and composition illuminated

by the plane wave
37(p) = 5¢°(p) = zeP*orcos(d=00) (3.1)

as indicated in Fig. 3.1. To evaluate the fields scattered from this object, two
boundaries are placed tightly around the body as shown in Fig. 3.2. Inside the outer

boundary, the Finite Element Method is applied to solve the Helmholtz equation

15
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Figure 3.1: Geometry of the scatterer
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Figure 3.2: Partially discretized body
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given by
V- [v(p) V()] + k;u(p)¢(p) = 0 (3.2)
where
$(p) = E.(p) (3.3)
u(p) = (p) (3.5)
for E-polarization and
¢(p) = H.(p) (3.6)
v(p) = e,(lp) (3.7)
u(p) = p-(p) (3.8)

for H-polarization. Also, k, = w,/ii,€, is the wave number, and p, and ¢, are the
relative permeablility and permittivity, respectively.

The appropriate boundary condition is enforced on the surface of the impenetra-
ble boundary, while the radiation condition is satisfied implicitly by evaluating the

integral equation
87) = 6") ~ §. {GW) [Ws(-p')] - 4(7) [%G(ﬁ,ﬁ')} } & (39)
on the boundary T, where
G(3.7) = ~LHP (k,[5 - 7') (3.10)

is the 2-D Green’s function in which H(?)(-) denotes the zeroth order Hankel function
of the second kind. Furthermore, 7 and p’ are the usual observation and source

position vectors, respectively, and

5-71=/(z -2+ (y — y')? (3.11)
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Symbol

Description

2 Z

=

(Ta,» Ya;)

(Ibu ’ yb.)

number of nodes in the finite element mesh
number of elements in the finite element mesh
number of nodes on I', or I'; along the z-direction
number of nodes on I', or I'; along the y-direction
total number of nodes on I,
total number of nodes on I’y
No+ N,

?:1 Fai

?:1 T,
g:l Fci
coordinates of a point on contour [,

coordinates of a point on contour T,

Table 3.1: Definitions for the finite element mesh

The normal derivatives are taken in the direction of the outward normal of T,.

3.2.1 Discretization of the Object and Field Quantities

In Fig. 3.2, T, is the field/observation point boundary, and T is the integration
contour, which is placed midway between I, and T',. Also, I'; denotes the contour
enclosing the impenetrable portion of the scatterer. Herewith, each side of T, T
and T'; are numbered counterclockwise starting from the top side, as indicated in
Fig. 3.2. The fields in the region between I, and Ty satisfy (3.2) in conjunction with

the required boundary condition on I'y. The boundary integral equation (3.9) will

be enforced on I,.
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Symbol Description

D, nodal fields on T,

&, nodal fields on T,

b, nodal fields on T,

b4 nodal fields on Ty

o1 region enclosed by I'y and Ty, exclusive

Table 3.2: Definitions of the field vectors

To numerically solve (3.2), it is required that the region within ', be discretized.
This is done in a traditional manner when employing the finite element method.
The global node numbering starts from the right endpoint of contour I's, and pro-
ceeds counterclockwise. The numbering continues beginning at the right endpoint of
contour Iy, and proceeds counterclockwise. Within T, the nodes are numbered arbi-
trarily. The definitions pertaining to the FE mesh are given in Table 3.1. Each node
corresponds to an unknown field value to be determined. It is important to associate
the unknown field values corresponding to the various node groups on contours I,
and I, by using different variables. The labeling scheme is given in Table 3.2, and
this discrimination of the nodal fields is required, since they are treated differently

in the analysis.

3.2.2 Derivation of the Finite Element Matrix

One of several approaches may be used to generate the finite element matrix, such
as the variational approach or the method of weighted residuals. In this development,

we will utilize Galerkin’s method, which is a special case of the method of weighted
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residuals with the distinction that the testing functions are the same as the basis
functions.

Proceeding with the finite element analysis, we may rewrite (3.2) as

aaz [ (z, y) ¢($ y)] + 56- [ (z ,y)a%aﬁ(r,y)] + Ku(z,y)é(z,y) =0 (3.12)

the residual of which is given by

R=-2 [v<x,y)§;¢(z,y)] -5 [v(x,y)%¢(x,y)] - Ku(z,9)¢(z,9) (3.13)

The field within I, may be represented as a summation of piecewise continuous

functiens and, thus, may be written as

Ne
= de(x,y) (3.14)

where ¢°(z,y) is the field within element e. It is expanded as

(z,y) = 2N° (z,y) ¢; (3.15)

where N¢’s are the standard shape functions (found in any standard finite element
book), ¢f’s are the fields at the nodes, and n is the number of nodes per element
(n = 3 for linear elements considered here). The weighted residual equation for the

eth element is defined by
//NfR dzdy=0 i=1,...,n (3.16)

where 5¢ denotes the surface area of the eth element. Inserting (3.15) and (3.13)

into (3.16) yields

) ; 9 aN; 0 aNe 2 e e
jgis/e/N‘ [_a_m(v ax)‘é"( ay)“k“N]¢ dzdy = 0

i=1,2...n (3.17)
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Further, by using the identities
.0 ( ON; a ( ON; . ONgON;
N‘EEE( 6:1:) a_x( oz A)“"axﬁf
ON¢
wed
dy ( dy )

and the divergence theorem

f/ (Z_Z“Lg_:) dmdy:feeﬁ-(ua‘:+vg})dl
&

where C* is the contour enclosing the eth element, (3.17) becomes

aNe BNC aNC aNC 2 re n7e e
:lef/( 5z ox U5y oy oM A)¢id$dy

ON:  ON:
—2}( N"( ’:&+v813}>-r‘zd1 i=1,2 .0
Y

J e
By "8y oy

9 ( ON; .\ _ ON:ON;
gy \" oy

This may be written in matrix form as
AC¢C — be

where

‘| 8N°3N° ('3N‘36Ne 2 nre are
[A%];; //( 52 31: 6y 5 2 — kXuN; Nj)drdy

and

8N° 6N°

{5}, —Zj{ N°¢=( v ) Adl i=1,2..n

For linear triangular elements, N are given by

1
Nt =
P20

(af + bz + cly)

and

[ l EE
Q=c11 z5 Y5 =2(b.c—b 5

1 z3 w3

(3.18)

(3.19)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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a; = ziy; — Thy; (3.27)
b = y; — i ‘ (3.28)
¢ =z} — I (3.29)

where (zf,y7) is the coordinate of the ith node of the eth element. From (3.23)

ON: b

dr 20 (3-30)
o _ < o
Substituting these and the formula [5)
S/e (NE)P(NS)? dzdy = 298#‘12)! (3.32)
into (3.23), we find
(A = e (65 + €565) — Ru e (1 4+ 8,) (3.33)
where
6i; = Pibe=y (3.34)

0 otherwise
In (3.33) we have assumed that u and v (the material constitutive parameters) are
constant within each element and are given by u® and v°, respectively. By summing

over all elements as implied by (3.14), we may write the overall system in block form

as
[ 1T 7 [ ]
Aaa Aab 0 0 ¢a ba
Apa Aw Ay 0 ®b 0
- (3.35)
0 An A Ap ér 0
0 0 Ay Aw || ¢4 ] 10
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In this, the values of the elements in the submatrix Ap, are the contributions asso-
ciated with the nodes in group p which are connected directly to the nodes in group
q.

One can easily show that the line integral contribution (3.24) of those elements
vanishes everywhere, unless the element has a side in common with [',. As a result,
b° contributes only from the boundary T, of the finite element region, as indicated
by the presence of the vector b, in (3.35). Without a priori knowledge of the total
field on that boundary, 6* cannot be determined. We may, however, provide the
appropriate condition on this boundary by utilizing the integral equation (3.9). This
amounts to replacing the first block-row of the matrix (associated with ¢, on T,)

with a discrete form of this integral equation.

3.2.3 Evaluation of Boundary Integral

The boundary integral in (3.9) may be written as a summation of four integrals,

one for each side of the contour T, as

o7 =¢"7) = [ |67 ) — (7)o, )]t
- | [eomametr) + 67) 260
Te, " on, oz’ “
- [ [0 715007 + o07) i) a
Te, " Ony ay' C3
- [G(p,ﬂ )5—8(7) — ¢(7) 7 5G(5.7 )} dle,  (3.36)
re, on, 0z
where the derivatives along the z and y directions, denoted by ﬁ: and %, re-

spectively, have been left in this form for the later convenience of determining them

numerically. More explicitly, we have

¢(r,ya§) = ¢"‘°(x,ya;)
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[ 0 0
_ I —_— ’ — ! s - /I . d ’
Pc] -G(‘r I ’ydé ’ycl)any ¢(1‘ 1 yc,) ¢(1‘ $yC1)ay,G(x r ) ya; ] y 1)] T

-

’ 6 ’ 1] 6 ! ’
- e, -G(l', xczvya;ay )5‘7;45(13@,?/ ) + ¢(xczvy )%G(l"rcw ya; 'Y )] dy

[ o .., , 9 ) )
- G(I - m,a ya; ayC:;)aqu(m vyCa) + ¢(.’l‘ sycs)gng(‘r T vya; vyC3)J dr

Fey | y

[ n 0 ' n 0 ' '
- ., -G(zaICnya;ay)%d’(wq’y)—¢(x6ny)'a__'r'}G(z’Icwyagvy)] dy

(3.37)
and

(}5(23“3 $y) = ¢inc(m03 ’y)

’ d ' ' a ' '
- G(l'agal' 'Y, ycl)'a'n—‘ﬁ(x ’ycl) - ¢($ 7ycx)a_y,G(ma3 y T s Y Yoy )] dz

L, | 4 v

’ a ’ ’ a ’ ’
- re, -G(xazvzczvy -y )B_nx‘ﬁ(mczvy ) + ¢(x021y )%G(xaf 1 Tegr Yy — Y )] dy

[ / ) ’ ' ) ' /
- L, .G(maz 'y THY, yaa)a_ny¢(z vyt:s) + d’(‘r ayC3)6_y,G(‘ra;z 'y T Y, st)] dz

[ 0 ’ ’ 0 ' [
- Fe, LG(xazaxcuy - y’)a—n;¢(x6ny ) - ¢(xC4,y )ﬁc(zaz 1T ¥ — Y )] dy

(3.38)

where the first subscript on x or y refers to the contour (a, b or ¢), and the second
refers to the contour number (see Fig. 3.2 and Table 3.1). It is noted that the
arguments of the Green’s functions have been modified to imply a convolution when
appropriate, and this representation will be used throughout.

The normal derivatives of ¢ may be evaluated via the central difference formulas

5@ ) = 5 [8(za¥) ~ 9lz3))] 4 O(A) (3.39)
5o d(a',30) = 5 16, 30) = 60", 30)] + (A" (3.40)

where A is the displacement of ', from T, (A is usually less than one tenth of a
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wavelength). Substituting (3.39) and (3.40) into (3.37) and (3.38), we obtain

) — ¢mc($sya; )

K;G(z - ﬂc',yaé Yo )8(2' Yay) — K G(z — 2, Yay > Yeu )é(z, s, )] dz’
1\’:G(IL‘, Teyps yﬂé ) y,)d)(xaz’y,) - K7 G(x, $62vya:1’ ,y')é(rbw yl)] dy’

A’;G(I - ZB,, ya; ’ycs)¢(x’a yas) - I{y— G('T - I,, ya; ﬂyc‘a)é(m,v Yoy )] dz’

1{;G($szq)yaé sy’)¢($auy’) - ]{:G(xvxqsya; ayl)¢(:rbqay,)] dy’

(3.41)

and

¢($az yY) = ¢inc(za3 yY)
- /r K, G(za, v Y Yo, )0(2' Yoy ) — K;’G(za3,x',y,yc,)¢(x’,yb, )] dz’
I\’:G(xazvxt:z’y - y,)¢(.'1302, y’) - A’;G(Iaz 1 Tepr Y — y')¢(xb2,y')} dy,

I{;G(xaz ) xla Y, yc3)¢(‘r,3 yas) - I{;G(zaz » x,a Y, yca)¢(I,a Yo, )] dz’

1\';G(xa3,rc.,y - y)o(za,y') — KI"G(-'Ica3 Lo Y — y')d>(:rb.,y’)] dy’

(3.42)
in which
R 1 10
K% = 1355 (3.43)
1 148
ri _ >
I\y A + 39y (3.44)

Assuming a pulse basis expansion for the nodal fields (i.e., piecewise constant func-
tions centered at nodes on contours I', and I';), a midpoint integration may be

performed for the evaluation of the integrals in (3.41) and (3.42), to obtain

¢(Iia ya;) = ¢inc(xi, ya;)
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Ky Glzi — 25, Y0y, ¥er )6(25,4a,) — K7 Gl - ZjsYay s Yer )O(25, Yoy )}

[

9

K:G(x,',xq,yaé ’yj)¢(xazayj) - I\’;G(I,‘,.’L‘cz, ya; ,yj)¢($bg,yj)]

I\’;G(.T.' - xjaya; sycs)¢(xjsya3) - 1\,;,—G($i - Ty, ya; ) y63)¢(‘rja Yo )]

]\,;G(-Tn xc”yag ’ yj)¢(xauyj) - I\’:G(.’E,, Teys ya; y yj)d)(-rbu y])]

(3.45)

¢(1'03 ’ yl) = ¢inc($a2 ) yt)

1\’; G(:raz 1y Ly Yis Yeu )‘b(z'ja ya1) - I(;G(.'L‘u,:, 1y Tjy Yis Yoy )¢($j, Yo, )}

I\’:G(maz s Legy Yi — yj)¢($a2, yj) - ]\’;G($a3 1 Legy Y — yj)¢(xb2, yj)]

[

]{:G(xaz s Ljs Yis yca)¢(xja yas) - 1"; G(xaz s L39 Yis Yes )45(1'.7" Yoy )J

1\';G(wa3 1 Ter Yi — Y5)9(Tay, y5) — KIG(xag yTeoy Yi — yj)¢(wb.,yj)]

(3.46)

In these z; and y; denote the ith matching/testing points corresponding to the nodal

locations on T',, while r; and y; denote locations on I',. We recognize some of the

terms in (3.45) and (3.46) as discrete convolutions amenable to numerical evaluation

via FFT. The subsystem (3.45) and (3.46) may be written more concisely as

r

Pa,

¢ag
Bay

| e,

( i’;C :151 T:;b: S:;bs R: Tu_xbc d’“l
_ O | | Taw  Shw  Th, b By | | e
:;r::c n_sbx R, T:a.bz S:a ba Ta_a by ¢°3

aw ] | Taw  ShoRe ThH, S5, 1 [ e |
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Saihy arbz as Bz T, o,
+ T:;bl 3_262 Ta—z ba 5:2 by RU ;2
S:-sb] R; Ta-sbz a_sba Tat,h ‘ ;>3

| T, Sawfe Tow,  Sdee || % |

(3.47)

with the various parameters to be given explicitly later. The matrices R, simply
reverse the order of the unknown vector so that the convolutions may be performed
properly. This is required solely because of the employed counterclockwise nodal

numbering scheme.

Since
1=1,2,3,4
() 1ast = (#6,)grst | (3.48)
1=2,3,4,1
the vector
T
[ 4 o o 4] (349

can be related to the actual unknowns on the contour I'y via a transformation D; as

¢, = Dy (3.50)

and (3.47) may then be written as

(I + Laa)¢a - LabDb¢b = ¢;nc (351)
or

|4P] e = gine (3.52)

&b



where

I+Laa=

and

.

-

I+ a—lbl
T-

azb;

- R,

a3b;

agd;

r

S+

ay by

T+

azby

S, R.

azb;

T+

a4by
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Ta-t b2 5:1 b3 R, Ta_l by
I+ S:z b2 Tt;; b3 Sa—z by Ry
Tl;tbz I+ St—ltsba a_alu
St: ) Td—t b3 I+5,,
0—1 b2 a—l by R; T:; by
a_z by 0-2 b3 Stj; by Ry
Ta_s by a.:aba T::; by
Santy Ton,  Siy,

agby

(3.53)

(3.54)

After replacing the first block row of (3.35) with (3.51), the complete system may be

finally written as

r

I+ L,
Aba.
0

0

_LabDb

Ap
Ap

0

0
Apr
An

Aar

to be solved via the CG algorithm.

The elements of AB! defined above

transform. Specifically, we have

ba

| ¢4 |

o
o1

(3.55)

may be evaluated via the discrete Fourier

Shay#y = DFT™ { DFTIG(2,vuy ) % Gy(2, 30,1, IDF T, 1} (3.56)

Sa,isb,¢bé = DFT_I {DFT[G(x’yaa’yb;)iGy(x’yaaayb; )]DFT{¢61]
3 3

(3.57)

Sts, 8 = DFT™{ DFT(G(ze,,20,.) Gulzass 20y VIDFTIg ]} (3.59)
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Sksy @y = DFT™ { DFT(G(te0s23.9) % Gu(zars 10, 1)) DF Tl )}

in which DFT denotes the discrete Fourier transform operator. Also

Gla,a'y,y) = ZLHP (klp = p'l) = ZLHP (kor/lz =27 + (v = y')?)

! 1 A a [ [
Gr(l‘axsyay)z E%G(‘r’x’yay)
i, H(kfz -2+ (y-y)?)
= _—Ako (I—I)
8 iz =27+ (y-y)?
, , A0
Gy(z, 7' y,y') = 2oy G(z,7',y,y')
YN O (ke — 27 + y—yj (¥ =)
877 Ja-a+(y—y)

Special cases of the convolution operators for the chosen mesh are given as
G'I(xng S y') =
2
Y (ko f(2ay = 20 + (= 1))
4 4

J(@eg =20, 4 (v =2

Ta,

FLk,

lava3 —$63|A {

00 |%.

Tq,

Gy(x - xla ya; ,yb;) =
Hl‘”(ko\/(:c — 2+ (Yo, — s, )?)
3 3 Ya,
[Ya, — ys, |A {
\/(x—x’)2+(ya§ _ybé )2 s 3 y

FLk,

0%~

a3

(3.60)

(3.61)

(3.63)

(3.64)

and the corresponding expressions for G are implied by the arguments in the previous

two equations. Additionally, the upper coordinate in the braces corresponds to the

upper sign and likewise for the lower one.

The cross-term element submatrices are given by

[Talbz] = G(xivxbzayanyj) iGr(xi’xbzayalvyj)
3 1] 4 3 4 3

[T::;b,] = G(ma;‘nxjsyhyb;):tG (mazax],ynybl)
2

4+ 3dyg;

(3.65)

(3.66)
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with

G;-(-Ti, xbz ’yaé ayJ) =

. H1(2) (ko (z; — Th, )2 + (Yo, — 91)2)

J 4 3 Ty,

Fik, |z — 23, 1A
8 \/(.7:,- = @3 )2 + (Yay —y;)? ' Ty

and
Gy(xasaxja Yi, yb;’,) =

j H{z)(ka\/(maz _-Tj)2+(yi—yb§ )2) Us,

Fgko lyi — us, 1A
3 Yp,

\/(zai — ;)2 + (yi — Y, )?

(3.67)

(3.68)

where again the corresponding expressions for G are implied by the arguments of the

previous two equations. Making the substitutions

(yag - yj)2 = j2A2

= (@i =20 + (5o — 3 = AV - 3P+
and

(1'03 - xj)z = j2A2
(vi —,)% = (i — 1)°A?
3

= \[er =il 4 (=, ) = A5+ (i = 3P

we may write G; and G, as

H? (kA = 17 + 2
Gz‘(mi,xbzayanyj) = :F%ko - ( . 112 - -2 . 2
FEE \/(z— 7))+

. H(Z) k, /jz-}-(i—l)?)
GV(10371"1’ Yi, yb;) = :Flk - ( 2 |l - %IA {yb3

N

.‘Itb‘

(3.69)
(3.70)

(3.71)

(3.72)
(3.73)

(3.74)

(3.75)

(3.76)
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to be used in the actual implementation of the system. Since each of the above
relations are similar, we are required to store only one of them and alter the signs
accordingly. It should be noted that, however, this is not the most efficient method
of storage. Storing only a few of the cross term values and using an interpolation
scheme will reduce the storage considerably. Of course, an interpolation table of
(3.75) and (3.76) will lead to a substantial reduction in memory at the expense of
some computational efficiency.

Assuming that the positive sign is chosen in equations (3.75) and (3.76), we have

T+, =1T-

azb; azby
4 h
+ T+
Talb2 apby
3
+ T+
Ta;bg azba
4 3
+ -
Ta;b. 7;564

(3.77)

Choosing the positive sign for the (3.63) and (3.64), we also find

+ —_ ¢+
Sa161 - Salbl
3 3

+ _ e-
50262  “agb;
4 4

+ - o-
Sa;;bl — “azb,
3 3

+ - Qt
Saabz = “a4b2
4 4

(3.78)
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Thus, the elements of A37 may be written as

- + +
I+ Sﬂlbx 7'0152 SﬂlbsR le4
+
Tt I+854, T, Sas Ry
I+ L =
+ +
San B Th, I+85, To,
+
| T4b1 Szub;» Ry 7:1463 ] + a.b4 J
Sal b] 7;;')2 Sa]bsR 7:1164
- + - —
Ta; by Sagbg 7—&263 azby R.'l
Lab ==
Sagbl RI a;bg Sa:;bg azby
L 7;4b1 Sa;bgR TQbS 80464

(3.79)

The elements of the adjoint of AB! required in the implementation of the CG algo-

rithm are
TS50 (Th)*  RISE)  (Th )
VS G~ S P C Rt A e
BISH)  (Th) T+(5a)  (Th)
L (Th) RUSH)T (Th): T+(S5,)° |
( (St (To) RIS (To)
dun o | P TSm0 @ RIS
RI(So)" (Ton) (St (o)
| @ Esny @n) (st

(3.80)

3.2.4 A CGFFT Implementation

The conjugate gradient algorithm presented in section 2.3 is employed for solving

the FE-BI system (3.55). The required numerical computation of Az and A%z are
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performed by first decomposing the system into a summation of two matrices; one

involving operators associated with the boundary integral and another involving the

elements of the finite element matrix. Then system matrix-vector products may then

be written as

{s} = {s}Br+ {s}re

where
I + Lua LabDb
0 0
{s}sr=
0 0
0 0
and
-
0 0 0
Ava Aw Al
{s}re =
0 An Ap
0 0 Ay
For the adjoint operations, we have
I+L2 00
DfLs, 0 0
{s}Br =
0 00
0 00
and
0 A, O
0 A Aj
{s}re =
0 Af, Ay
0 0 %4

A

Add

a

dl

a
A3 |

24

2]

22

23

<1

22

Z3

21

22

<3

Z2

<3

(3.81)

(3.83)

(3.85)
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In each case, the operation is performed such that only the resulting vector {s} need

be stored.

3.3 Computational Considerations

The FE-BI method for rectangular enclosures is efficient in terms of memory

usage and computation time, and each of these aspects is discussed in detail below.

3.3.1 Storage Efficiency

The fundamental advantage of this method is the reduction of storage require-
ments, so that the scattering by electrically large bodies may be evaluated. To show
that the low storage requirement of O(N,) is assured, we refer to Tables 3.3 and 3.4.
These contain a list of all major memory consuming variables. A summarized list
is also given in Table 3.5. Specifically, Table 3.5 includes the memory requirements
pertaining to the finite element matrix (FE), fast Fourier transforms (FT), boundary
integral cross terms (Cross) and conjugate gradient variables (CG). N. is one less
than the number of elements connected to a particular node, and a typical value of
5 is used here.

To put the quantities of Table 3.5 in terms of N,, the total number of nodes, we
consider two special geometries. The mesh in Fig. 3.3 corresponds to a penetrable
body, while that of Fig. 3.4 corresponds to an impenetrable structure tightly enclosed
by the picture frame. Within each special case two extremes are considered; a mesh
corresponding to a square object (N, = N,) and a long strip (N, >> N,). In each
case, Ny is assumed to be large.

Alluding to Table 3.6 the total storage is O(N,) for the square region, but is

somewhere between O(N,) and O(N?) for the (N; >> N,) case. This is based
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Memory Consumption

variable | type | count comment

Mesh

Xg R N, X coordinate of global nodes

Yg R N, Y coordinate of global nodes
Nglob |1 3N, Node-element connectivity
Pointers

ABint |1 Nas Observation and integration points
Pnodes |1 Pnum Nodes on conducting bodies

dmatl | Ng — Ngs Element material properties

Finite Element Matrix (FE)

Ar C ~ (ﬁﬂgﬂ)(Ng — N,) | Non-zero values of FE matrix
col I ~ (21)(N, — N,) | Column pointer of FE matrix
row 1 Ny — N, Pointer to rows of FE matrix

Conjugate Gradient (CG)

Phiz C N, Unknown vector
CG1 C N, Residual vector
CG2 C N Search vector

CG3 C N, Temporary vector
q C MAX(N;, N,) Temporary vector
phiinc C N, Incident field vector

Table 3.3: List of major memory-consuming variables
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Memory Consumption (continued)

code

variable | type | count comment

Fourier Transforms (FT)

FTHx1 | C 2N, Fourier transform along x-direction
FTHx2 | C 2N,

FTHx3 | C 2N,

FTHx4 | C 2N,

FTHyl | C 2N, Fourier transform along y-direction
FTHy2 | C 2N,

FTHy3 | C 2N,

FTHy4 | C 2N,

FT C 2MAX(N,,N,) | FT of unknown sub-vector

WR R 2MAX(N,,N,) | Temporary array

Wi R | 2MAX(N;,N,) | Temporary array

Cross-Term Matrices (Cross)

PQp C ~ MAX(N,, N,)

PQm C ~ MAX(N;, N,)

Legend
R = REAL*4
C = COMPLEX

I = INTEGER*4

Table 3.4: List of major memory-consuming variables (continued)



37

Major Memory Consumption (N, > N,)

Item | Type Count

FE COMPLEX | (EAL)[N, — 2(N,; + N,))]
FT COMPLEX | 12N, + 8N,
Cross | COMPLEX | 2N?

CG | COMPLEX | 4N,

Table 3.5: Summary of major memory consumption

Major Memory Consumption: Penetrable
Item | N, =N, N:>> N,
FE | (5)(No = 4y/Ny) | (B5E2)N,(1 — 555)
FT 20,/N, 12N, /(N, + 2)
Cross | 2N, 2(Ny/N,)?
CG 4N, 4N,
total | ~ 9N, ~2(525)* + 6508 + TN,

Table 3.6: Summary of major memory consumption: filled mesh
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Figure 3.3: Example of the mesh of a penetrable structure

Figure 3.4: Example of the mesh of an impenetrable structure
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on the assumption that all cross terms are individually stored, but by using an
interpolation table, the O(N,) memory requirement can be assured regardless of the
value of N, with respect to N,. In Table 3.7, more dramatic results for the storage
of the cross term are listed. In this case, all of the unknowns are on the outer two
boundaries, so it appears that the storage is O(N?) for the square case. One must
note, however, that the factor multiplying the N, term may be quite small. The strip
case, on the other hand, requires an O(Ngz) storage. This case would be an unlikely
candidate for the use of this method, since that structure would be handled much
more efficiently via a direct implementation of the CGFFT method. As noted above,
the storage of the cross terms may be brought down to O(N,) for all cases by using

an interpolation table, and this will certainly be necessary in a 3-D implementation.
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Major Memory Consumption: Impenetrable
Item | N; = N, N:>> N,

FE | (%2)N,/2 | (%N, /2

FFT | 5N, /2 3N,

Cross | N2/32 N?2/8

CG | 4N, 4N,

total | ~ N2/32 +8N, | ~ NZ/8+1TN,/2

Table 3.7: Summary of major memory consumption: open mesh
3.3.2 Computational Efficiency

Since the primary importance of the FE-BI method is storage reduction, a com-
parable level of efficiency with alternative methods is a bonus. A method for which
a fair comparison may be made is the standard CGFFT. This requires a 2-D FFT,
which is slower than using multiple 1-D FFTs for large bodies. We compared the
two methods for a specific penetrable scatterer using an Apollo 3500 without code
optimization. The pertinent CPU times are compared in Table 3.8. The comparison

provides only a relative measure of the speed difference.

3.4 Far Field Computation

The scattered fields may be computed as

o) =~ § {oe.7) [%é(ﬁ)] — 67 [%G(mf)] bar s
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Body Properties FE-CGFFT CGFFT

Composition | Dimensions | T/I (s) | I Total | T/I (s) | I | Total

dielectric 22 x 2) 8.6 155 | 1333 | 170 33 |l 5610

& =4-7.1

Legend

T/1 = time/iteration

I = number of iterations

Table 3.8: A comparision of computation efficiency of the FE-CGFFT with the
CGFFT method

Using the discretization scheme developed earlier, we have

¢°(z,y) =
- { S K5 62 3.00)6(0' 1) = K G768, w,)]
+ /r (K2 G(2, 36, 4,¥)8(20r, ¥") = K2 G(2,201,9,9") (s, y)| dy’
€2

+ [KIG(I,x',y,yq)¢(z',ya3)—K;G(r,x',y,yc3)¢(x',yb3)] dz’

+ /r [K7G(2, 20,9, 4)8(2a,, ¥') - K}G(z,2¢,9,9)8(zs,, ") dy’}

(3.87)
where the definitions for K* and K;t are as specified previously. Letting
r 1 IJ+% ! !
ﬂ (.’L‘, Y, yc) = Z A G(.’L‘, T,Y, yc)dx (388)
-5

17 1 y"+% ! !
ﬁ (IixC) y) = —A— a G(.I', T ¥,y )dy (389)
Y;—
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1 (=+% 0
Py G(l’, xla Y, yc)dxl
2 1'_,—% 3y'

1 fw+% 9

2 y,—% 61"

7z(xayay0) =
(2,2, y) = G(z,zc,y,y')dy’

(3.87) becomes

¢*(z,y) =

=1

(3.90)

(3.91)

N;
- {Z (1B%(z, 9, ¥e) = 7 (2,4, ¥ )] {Bar 35 = [8°(2, 4, 90,) + 77 (2,9, ¥,)) {9, ;)

Ny
+ Z ([ﬁy(x’mcvy) + 7”('7:’:”6211/)] {¢az}j - [ﬂy('rvzcw y) - 9¥(z, ey, y)] {¢b;}j)

N
+ Z ([ﬂz(xay»yca) + 7::(:1:’ Y, yca)} {¢aa}j - [6I(xa Y, yt:a) - 7x(x,yayca)] {¢bs}j)

=1

=1

Ny
+ Z ([ﬂy(x"rq7y) - 7y($»x<:uy)] {¢04}j - [ﬁy(:l,‘,.’l:c“y) + 7y(z,xc‘,y)] {¢b4}j)}

(3.92)

valid for all observation points (z,y). To specialize (3.92) to far zone computations,

we must introduce the appropriate asymptotic expansion for the Hankel functions

implied in (3.88)-(3.91). In doing so, we have

B(2,4,5e)) = 5 o(P) 26,y Yoo =
B4(2,3¢1,) = i o(p)fa(0, 3y )ePton 8
7""(3;, Y, ycg ) = _fo(P)fl(o, yc; )koA sin fe ko=s cos?

Y(z,2cp,y) = —fo(p) f2(8, 2., Y koA cos GeIkovs sin8

12 ik
Jkoyc, sin8

fl(ovng) = —¢€ 3

Jkoxc., cosf
f2(0,z.,) = —e ]
4

where

(3.93)
(3.94)
(3.95)

(3.96)

(3.97)

(3.98)

(3.99)
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in which (p, 8) imply the usual cylindrical coordinates of the observation point. Sub-

stituting expressions (3.93)-(3.96) into (3.92), we obtain

QS}f(:c,y) = _fo(p)
N, |
{Z ([ + koAsin] {¢a, }; — [7 — koA sin 0] {¢s, };) f1(8, ye, )e?FoTr <o5¢

+ ) ([ — koA cos8] {@a}; — [ + ko> cos 0] {Bs, };) fa(8, 2, )e?kovs 5iné

z ([7 — koA sin8] {¢a, }; — [J + koA sin 0] {4, };) f1(8, ye, )e?*o%1 <o5¢

1

.
1]

T2 (7 koA cosb]{d}; - U—koAcosoJ{asb.}j)fz(e,mc»ef""”sme}

(3.100)

From (3.100) the echowidth becomes

Ny |
Z ([] + k,Asin 0] {d)a] }j - [_] - koA sin 9] {¢b1 }J) fl(e’yq )ejkoz‘, cos§

1=1

N, | |
+ Z (I7 — koA cos ] {¢a,}; — [j + koA cos 8] {$1,);) f2(8, xc, )ei*ovs siné

=1

N; |
+ D ([j — koAsin] {a,}; — [J + koA sin8) {ds, };) f1(8, ye, )e*o™ <58
1=1

2

Ny
+ 3 (U + koA cos 8] {a,}; — [ — koA cos 8] { s, };) fo(B, T, )eikews sin

=1

(3.101)

3.5 Code Validation

The scattering patterns from several rectangular structures are presented. The
echowidth is computed for each structure and compared to the results of the moment
method. The bodies are discretized at a sampling rate of 20 samples/free-space
wavelength.

Results are presented for the following cases:
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e perfectly conducting bodies (Figs. 3.5 and 3.6)
e partially and fully coated perfectly conducting cylinders (Figs. 3.7 - 3.12)

e composite body (Fig. 3.13)

In each figure, the discretized geometry is shown along with the corresponding
results. As seen in all cases, the generated patterns using the FE-CGFFT formulation

are agree with the moment method data.
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.25 x 2. A Perfect Conductor (E-pol)
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Figure 3.5: E, backscatter from a .25 x 2) body
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Figure 3.6: H. backscatter from a .25 x 2\ body
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30.0 , — : ———
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Figure3.7: E, backscatter from a .25 x 1) perfect conductor with a A/20 thick
material coating containing the properties ¢, = 5. — 7.5, 1, = 1
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.25 x 1. & Coated Perfect Conductor (H-pol)
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Figure 3.8: H, backscatter from a .25 x 1\ perfect conductor with a A/20 thick
material coating containing the properties ¢, = 5. — .5, pr =1
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Figure3.9: E, backscatter from a .25 x 1A perfect conductor with a A/20 thick
material coating containing the properties ¢, = 5. — .5, u, = 1.5 — j.5
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Figure 3.10: H, backscatter from a .25 x 1\ perfect conductor with a A/20 thick
material coating containing the properties ¢, = 5. — 7O pr=15-~345
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.25 x 1. A Double Topped Conductor (E-pol)
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Figure 3.11: E, backscatter from a .25x 1 perfect conductor with two A/20 thick top
material coatings. The lower layer has the properties ¢, = 2. — ;.5, Pr =
1.5 - 7.2, and the upper layer has properties ¢, = 4. 7.5, =15-;.2
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.25 x 1. A Double Topped Conductor (H-pol)
30.0 T T T 1 i

200 | =
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Figure 3.12: H, backscatter from a .25x 1) perfect conductor with two A/20 thick top
material coatings. The lower layer has the properties ¢, = 2. — 3.5, u, =
1.5 — 7.2, and the upper layer has properties ¢, = 4. — 7.5, u, = 1.5 — .2
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.5 x 1. A Composite Body (H-pol)
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Figure3.13: H, scattering from a composite body. Both the perfect conductor and
the dielectric body are A/2 in each dimension. The material properties
are ¢, = 5. - 7.5, 4, =1.5—-3.5
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3.6 Summary

A procedure was developed for computing the scattering by 2-D structures. This
procedure combined the boundary integral and finite element methods, and the re-
sulting system was solved via CGFFT. The main advantage of the new approach was
a reduction in memory demand to O(N) compared to O(N?) required with tradi-
tional solution techniques. A detailed map of the storage requirements was presented,
and the principle memory consuming arrays were discussed. Also, the computational
efficiency of the technique was examined and found favorable. To validate the pro-
posed solution approach, several backscatter patterns were presented and compared

with results based on traditional solution methods.



CHAPTER IV

A Finite Element — Boundary Integral Method
for Two-dimensional Scattering Using Circular
and Ogival Termination Boundaries

4.1 Introduction

It is possible to choose other boundaries that result in convolutional integrals,
and in this chapter we consider circular and ogival enclosures. Clearly, a circular
enclosure would be attractive for circular scatterers whereas an ogival boundary will
be more attractive for those structures conforming to this boundary. In the case of
the circular boundary the entire integral is convolutional ensuring the O(N) memory
demand of the system provided an iterative solver is used. When an ogival enclosure
is used the integral becomes convolutional only if the observation and source points
are on the same arc, but an efficient storage scheme is again required for the remaining
“cross-terms” 1.

In the following sections, the pertinent FE-BI formulations are developed for the
circular and ogival boundaries. Results for several circular and ogival structures are

presented and shown to be in excellent agreement with that obtained by traditional

methods.
1

“cross terms” refer to integrals for which the source and observation points are not on the same
arc

35
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X
Figure 4.1: Geometry of the scatterer
4.2 Analysis
Consider the plane wave
F(7) = 247(7) = sertereoss=00) (4.1)

illuminating a composite cylinder as shown in Fig. 4.1 and we are interested in
computing the scattered field. For the application of the Finite Element - Boundary
Element Method the target is enclosed in a fictitious circular or ogival boundary as
shown in Figs. 4.2 and 4.3. Within the boundary I,, the finite element method is

used to solve the Helmholtz equation

V- [v(P)Ve(P)] + k2v(p)é(p) = 0 (4.2)

where

v(p) = &(p) (4.3)
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for E-polarization and

1

o)’ v(p) = u-(P) (4.4)

6(p) = H.(p), u(p)=

for H-polarization. The free-space wave number is k, = w/l1,€, and g, and ¢, are
the relative permeablility and permittivity, respectively. On the boundary [, the

Helmholtz integral equation

o7 = 6™ 5) - § {65.5) |5z st5)| - 67 | Gip| bt (49

provides the required boundary constraint, implicitly satisfying the radiation condi-

tion. In (4.5)
G(p,7.) =~ HO kel = 7)) (4.6)

is the 2-D free space Green’s function where H{?(-) denotes the zeroth order Hankel
function of the second kind. Also, Si_a denotes differentiation with respect to the
outward normal, whereas p and p, are the usual source and observation points,

respectively, and

5 —7al = V(2 = 2a)2 + (y — ya)? (4.7)

4.2.1 Circular Enclosure
Discretization of the Scatterer and Field Quantities

The region enclosed by I',, denoted as R,, is discretized into N, finite elements
as illustrated in Fig. 4.2. In the figure, p, is the radius of the circle and a, is the
integration angle along this boundary (Further definitions for the finite element mesh
are indicated in Table 4.1, while the definitions of the field vectors are indicated in

Table 4.2.). We note that nodes along I', are equispaced with angular displacement

A.
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Figure 4.2: Partially discretized body in a circular enclosure

Symbol Description
N, number of nodes in the finite element mesh
N, number of unknowns
N, number of elements in the finite element mesh
N, number of nodes or elements on T,
Ny number of nodes or elements on I,

Table 4.1:  Definition of various quantities associated with the finite element mesh
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Symbol Description

Pa field at the nodes on T,
Ve normal derivative of the field at the nodes on T,
o1 field at the nodes region I enclosed by I'y and I';

@4 field at the nodes on Iy

Table 4.2: Definition of various field vectors associated with the finite element mesh
and its boundary

Derivation of the Finite Element Matrix

The weighted residual expression over each element may be written as [5]

/ RW: S =0 i=1,23 (4.8)
Se

where

e _ a a e 8 a e .2 e
= [u(x,y)aﬁﬁ (x,y)} -5 [U(x,y)a?i’ (m,y)] - Ko(z,9)¢(z,v) (49)
In (4.9), W¢ is the ith weighting function associated with the eth element. Substi-

tuting (4.9) into (4.8) and invoking the divergence theorem yields

// {—u [aqs IW; + 9¢° BW‘CJ + kqus‘W,-‘} Qe
Sc

Oz 0Oz Oy Oy

+/r Weedl™ = 0 (4.10)
where I'* denotes the contour enclosing the eth element. Additionally,

e_ . 0¢°
Y= on

(4.11)

1s zero outside element e. Summing over N, elements we obtain

Ne a¢e 6VV: a¢c ame 2 . . .
’;S/j {—u [ax Oz + Oy dy ] + kove Wi}dQ

N, Ny
+§‘,/r Wrp*dls + Z/r Wyl = 0 (4.12)
s=1 a s=1 :i



60

where the summations over s refer to the elements with sides adjacent to the fictitious
(Ie) and conducting (I'y) boundaries.

The integral over the conducting boundary in (4.12) vanishes all cases. This is
obvious when no conductor is present. When ¢ = H,, the normal derivative of the
field is zero on the conductor and the field unknowns on the boundary are allowed to
“float” (i.e., they are not fixed to a specific value but are determined by solving the
system). Finally, when ¢ = E,, imposing the Dirichlet condition after assembling the
finite element system results in the elimination of those equations associated with
the integral over T'y.

Proceeding with the discretization, the field and its derivative within each element

may be expanded into a linear combination of shape functions

3
¢° = > N; ¢ (4.13)
J=1
3
Yt =3 N oS (4.14)
k=1
Substituting (4.13) and (4.14) into (4.10) and choosing W¢ = N (Galerkin’s method),
we obtain
3 3 3
2 a5 = 20 (ks =0 (4.15)
=1 k=1j=1
where
c ON; ON;  ONgONS A .
" —5// {u [ 9z 0z T oy gy | RoNIN; } dQ (4.16)
and

by(k) = [ N:Ng e (4.17)
For linear triangular elements, Nf are given by

1
Nt = ¢ ¢ ¢
£ = se(al + bz + ciy) (4.18)
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with
Q° = L(bict - bic (4.19)
a; = Tiyp — TLY; (4.20)
b = y; — i (4.21)
¢ = zp — 1§ (4.22)

and (zf,yf) being the coordinates of the ith node of the eth element. From (4.18)

ON¢ be
I 4.2
Jz 202 (4.23)
ON¢ s
L= 4.24
dy 2Q2e ( )
Using (4.23), (4.24) and the identity
/ (NP (NS Ydzdy = 20¢ — P (4.25)
xdy = — .
YT et
a;; in (4.16) reduces to
at (b’b‘ cics) — kv A —(1+ &) (4.26)
C 4Q= 12 v '
where
1ifi=3
8;; = (4.27)

0 otherwise

We note that in deriving (4.26) we have assumed that » and v (the reciprocal of the
material constitutive parameters) are constant within each element and are given by
u® and v°, respectively.

To find an algebraic expression for b3, we may reparametize the integral in (4.17)

as

01+A
b, = / PsPeroda (4.28)

1
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where P and P; are given by

3

s —-1_ 4.29
Pla)=1 ol o (4.29)
a—aj
o) = 4.30
Pile) = S50 (4:30)
Integrating, we have
T, A
k= T(&'k +1) (4.31)

Substituting the previous equations into (4.12) a sparse matrix is obtained for

the nodal fields that has the form

Aaa AaI 0 _Baa ¢a 0

A Arr A 0 o1 0
(4.32)

0 Ay Aw O $a 0

0 0 0 0 P, | 0

In this, the values of the elements in the submatrix A,, are the contributions asso-
ciated with the nodes in group (region or boundary) p which are connected directly
to the nodes in group g. Also,

A
6

[Baallk = Z b'k = 6:-—1 kr+ 46:1: + 6i+l k) (433)

The last row in (4.32) has been intentionally left blank to imply a need for another
set of equations relating the fields and its derivatives on T',. This additional set of

equations is produced by discretizing the boundary integral equation.

Evaluation of the Boundary Integral

The boundary integral in (4.5) may be rewritten in cylindrical coordinates via

the transformations

= |Z(pcosa — pg cosa,) — f{psina — p, sin ag)]

= V/0? + 52 — 2pp, cos(a — a,) (4.34)
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where (p,a) and (p,, ;) are the usual source and observation points in cylindrical

coordinates. For |p| = |pa],

[P — Pl = 2p |sin (252a)] (4.35)

and the Green’s function and its normal derivative may be written as

G(p,7.) = ~H (2kopa sin (2522)) (4.36)
ai G(7.7.) = i L2 HP) (2k,pasin (252)) sin (2500) (4.37)

We may now write (4.5) as

38(p, @) = ¢™(p, ) - folp,@) + filp, ) (4.38)

where as a result of (4.36) and (4.37)

folp,a) = _i,,,, / ) $(par ) HSP (2k,pa sin (2524)) da, (4.39)
4 0
filp,a) = %pa ][Z”¢(Pa,aa)H( ) (2k,pa sin (25a)) sin (252a) dax, (4.40)
with
" _ 0 4.41
(Pasa) = apa¢(pa3aa) (4.41)

The factor of 1 in (4.38) accounts for the singularity associated with H,(Z)(-) and the
# (4.40) denotes principal value.

We may now discretize (4.39) by expanding the field using pulse basis functions

l/) paaaa Z PA(aa - a]) (442)

where

X33

1 |ae —a;| <
PA(QQ - C!j) = (443)
0 otherwise
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and A is the angular width of the integration cell as indicated in Fig. 4.2. Thus, the

discrete version of (4.39) may be written as

4

JPa 2 stT o) -
folpva) = =222 57w, [ 5 HO (2k,pq sin (2522)) dax, (4.44)
1=1 B

Performing point collocation and letting u’ = a — a,, we have

(ai-aj)+ 2

folprai) = =22 3y [ 7 HE (2hopsin () du (4.45)
j=1 Qy—0xy —-.‘,—
which may be written in compact form as
f (p,a, Jpﬂ Z¢]h0 ) _aj) (446)
where
(al—a])'f'% 9 .
ho(a; — a;) = /; 4 H® (2k,pq sin (2)) du (4.47)
aj~a;)-%

It is clear that (4.46) is in the form of a discrete convolution and can thus be written

as
folp,@) = DFT™' {DFT(4) ¢ DFT(ho)} (4.48)

where the elements of kg are given by

A{l—] [In( “A) 1}} p=0

h (pA) =
i f((:+1 )): (2kopa sin ( )) di/ p=1,...,.N, -1

(4.49)

where in developing the p = 0 term, the small argument approximation of the Hankel

function was used and is given by [12]

l—jzln(lge) n=0

; (2) —
Jim_ H®(kp) = (4.50)

(k)" 2% (n—1)!
2nn! + w{kp)™ n>1
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in which 4 ~ 1.781. Through a similar analysis, the field may be approximated by

the expansion

Na
¢(pﬂ’aa) ’:ZPA(QG —Qj)¢j (451)

and by substituting this into (4.40), we obtain

-kopa Ne
filpyei) = j== 3 ¢ihi(es — @) (4.52)
=1

where

(ai-a;)+2
’ *HY (2kopqa sin (%)) sin (¥) du’ (4.53)

hi(ai — aj) = ][ R (%
(CI.—GJ)—?

Clearly, (4.52) may again be written in operator form as

filp,@) = DFT™! {DFT(¢) e DFT(h;)} (4.54)
where
kopa é—sm +-7« r=20
h(pA)=9q ", () 3)+ims ' (4.55)
f(: [N Hm (2k,,p,, sin (“7)) sin (“7) du/ p=1,..,N, -1

where again (4.50) was employed.

Point matching (4.38) at each node results in the system

38i = 6™ — folp, @) + fi(p, i) (4.56)

which may be written in operator form as

Maota — Laathe = ¢ (4.57)
where
JPa
[Lad)y; = Z ho(a; — ) (4.58)
(Mal, = 16, — 22250, 0, — o) (4.59)
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Figure 4.3: Partially discretized body with an ogival enclosure

A final system is obtained by combining (4.57) with (4.32) to yield

Aaa Aal 0 _Baa ¢a 0

Al A A 0 é1 _ 0 (4.60)
0 Ag Aw 0 ¥ 0

Maa 0 0 —Laa d)a ¢znc

which can be solved via the conjugate gradient algorithm to obtain the nodal fields.

4.2.2 Ogival Enclosure
Discretization of the Scatterer and Field Quantities

The region within 'y, denoted R,, is discretized into N, finite elements and a
partial discretization is shown in Fig. 4.3 for the circular case. With respect to
Fig. 4.3, the definitions of the various quantities are found in Table 4.3. Further
definitions for the finite element mesh are indicated in Table 4.4, and the field vector

definitions are indicated in Table 4.5.
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Symbol Description

A, angular displacement between nodes on T,,

Pa, radii of Lo,

Qq, angular integration variable along T,
t distance between centers of curvature of [a,
Yep y-coordinate of the center of curvature of Lq,

Table 4.3: Geometric quantities in reference to the figure above

Symbol Description
N, number of nodes in the finite element mesh
N, number of unknowns
N, number of elements in the finite element mesh
N, number of nodes (=N,; + N,;) on T,
Ie Ta, + T,

Table 4.4: Definitions for the finite element mesh with an ogival enclosure

Symbol Description

Pa, fields corresponding to the nodes on Ie,,p=1,2

Ya, fields corresponding to the midpoints of the nodes on Lg,
¢a,+} fields at the nodal midpoints on o,

o fields corresponding to region | enclosed by I', and [’y

dd fields corresponding to the nodes on the I'y

Table 4.5: Definition of the field vectors for the ogival boundary
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Derivation of the Finite Element Matrix

The derivation of the finite element matrix follows that described in section 4.2.1
with the exception of the matrix B,,. Consider the ogival boundary as indicated in
Fig. 4.3. The boundary contour I'; is comprised of two arcs labeled T';, and T,,,
which form the vertices of the ogive where they meet. At the vertices the unknown
normal field is discontinuous and will therefore be evaluated at the midpoint. Also,
in evaluating the contour integral, the field derivative are expanded in terms of pulse
basis functions, rather than linear functions. This results in a different B,, matrix

and involves the replacement of P in (4.28) by the pulse basis function expansion

1 f0<|a—q4 < %
PA(a—aj) = (4.61)

0 otherwise
By integrating in cylindrical coordinates we then obtain

e _F . .
b =58+ 6i5nm), j=1, i=1,2 (4.62)

where [° is the length of the eth boundary element along I', and is equal to Pa,Dp
for Ty, p = 1,2. Performing a summation over all boundary elements then yields

v

Buo);; Eb =3 (855 4 65 541) (4.63)

where 7 is the length of the jth element since the jth “node” (associated with the
unknown ;) is at the center of the jth boundary element.

The remainder of finite element analysis for this case proceeds exactly as in section

4.2.1.

Evaluation of the Boundary Integral

The evaluation of the boundary integral along an ogival contour is similar to

that described for the circular boundary. For integration and observation points
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on the same arc, the integrals become convolutions. On the other hand, when the
integration and observation points reside on different contours, the integrals have no
special form and must be discretized and stored in memory as efficiently as possible.

The distance between the source and observation points in terms of cylindrical

coordinates for points on the same arc is given by

[P = Pa,| = \/P? + P2, — 2ppa, cos(a — aa,) p=1,2 (4.64)

When the source and observation points are along different arcs, (4.64) becomes

1Py = Pyl = (P 005 @ — pacos @e,)? + (psin ag — pa sin au, + gey — 5, )?

p.g=12 (4.65)

in which the subscript a, refers to the integration coordinates along contour p and
the subscript ¢ refers to the observation coordinates. Also, Yc, is the y-coordinate of
the center of curvature for contour p for p = 1,2. For further reference we note that

(4.65) may be also rewritten as

(P} + P2, — 2p1pa, cos(a: — @q, ) + 12 F 2t(p1 sinay — Pa, Sina,,) (4.66)
2 1 23 2 1 2 2 1 1

where ¢ = y., — y., and the upper sign corresponds to the upper set of subscripts.

To discretize (4.5), the fields are expanded as

Na, Na
QS(pas au) ~ Z PA(aa - aj)d’j.g.;_ + E PA(aa - aj)é_j-{.l5 (467)
i=1 3=Na; +1
Na, Na
Y(pa, aa) E PA(aa - aj)l/)j + Z PA(aa - a,-)'(,bj (4.68)
J=1 Jj=Na; +1

where as before

1 if ]aa—ajl S %—
PA(aa - C!J') = (469)

0 otherwise
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and

biv1 = 3(&; + dj41) (4.70)

2

Substituting (4.67), (4.68) and (4.69) into (4.5) then yields

%45(/’1, ay) = ¢im(.01,01)

an a]+A1
- Z 1)[)1 / Ga(Pl, Pa;s Q1 — Qq, )paldaal
=1
N°1 o;+4 6
+ Z ¢J+ f F GO(pl’ Payy 01 — aa:)/’andaal
a pa]
Na °’J+A2
- Z ¢'j / Go(plapazval’aaz)/’azdaaz
'=Na1 +1 o
01+A2 6
+ Z ¢J+ f 6 GO(Plapazval,aag)Pa,daaz (471)
7=Na; +1 o, Pa;
when the observation point is on Iy, and
%¢(P2,012) = ¢inc(P2,02)
Nal aJ+A1
- E ¢J / Go(p27 Pay, Q2, Qq, )Puldam
J=1

an QJ"‘AI 8
+ E ¢J+ ][ p Go(p2, pay» @2, Ca, ) pa, darg,
a

aJ+A2
- Z ¢J / Go(p27 pﬂ2’ a2 - anz)pazdaaz

J-Nal +1
a_,+A2 a
+ Z ¢J+ f a Go(P21 paw Q — Qq, )paz daaz (472)
7=Nay +1 @ OPa

for observation on T,,. Performing point collocation at the nodal midpoints, (4.71)

and (4.72) further reduce to

%¢(P1aai+;—) = " (pr, iy 1)

Na, ai-a;+4

- Z L Go(Pl,Pa,,U)Pa,du

i—a,
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Nul 0.—QJ+% 6
] —G sPa;sU)Pa du
t E 2% ][a--a,+%0pa1 o(P1: Pay+ ) pa;
Na o+ Az
- Z d)J_/ GO(plapa:, ai+%,aa2)p02d0a2
j=Nul+1 ay
Na OJ+A2 6
+ E ¢j+;—][ a_Go(pl’pazsai+%,aa2)Pa2d002 (473)
J=Na;+1 @y Pa,

for observation on I',, and

38(p2, 0i41) = 6™ (2, ap1)

Na, a,+4,
- Zd"J GO(p% panai+%vaa1)paldaan
j=1 o

2

Na, a,+A 6
) 1
+ Z ¢J+1§ ][ P Go(P2, panai+;—’a01 )pmdaal
j=1 o Pay

Na a;—a -{r—é
. k] 3
- z ¢J/ A GO(p21p021u)pﬂzdu
j=Na,+1  Jx—ot3
e ai-o,+g 9
+ Z ¢j+% ][ N a—Go(pQ,p,,?,u)pazdu (4.74)
J=Na; +1 ai—a,+ 5 UpPaq,
where the ‘1’ in the subscript refers to the fictitious “node” midway between the
2 p

actual nodes. A system of equations can now be obtained by testing (4.73) and

(4.74) at a sequence of points on the contours. This yields

10100 = 405y — {Luve, + Puatie, — MiCige, — 1Q12Cade, |

1C20a = 8051 — { Putbe, + Larte, = 1QuCia, — EMnCade,}  (4.75)

which can be alternatively written as

( »
MnCy Qi12Cy b Ly, P, Pa, _ ¢::i;_ (4.76)
QuC1 Man(, Py Ly Ya, artd

i J L% ] | |
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In this, the nonzero values of the upper bidiagonal matrix C are 1, and ¢;’;C+1 the
2
value of the incident field evaluated at the nodal midpoints. The matrix D accounts

for the double use of the nodes at the endpoints and the remaining elements are

given by
Mpp = %(%I° M) (4.77)
Qpq = —5C@pq (4.78)
(4.79)
for p = 1,2 in which
aj—a;+=F
[MPP]ij = /a.-—a,+922 Go(Pp) Payy U)paydu (4.80)
a.-—a,+%£ a
[LPP]:'J' = ][a'_aj+£zap_%Go(ppvpapau)Papdu (481)

"’J“’Aq
[QPQ]:'J' =L pwpaq’ ;+’7aaq)Paqdaaq (482)

and

a;+4q g
[qu].'j = /a p

More explicitly, upon evaluation of the integrals

Go(pp, Paq’ai+%’aaq)f’aqdaaq (4.83)

q9

( kopa [k _sm_z +£L} P
(Mpol;; = 4 o )+ ’ (4.84)
=) :”: = H{(2k,p,, sin ¥)sin du i # j
(
=322 {1 - j2 [In (Loeee) _ 1]} i=j
[Lepl;; = | (4.85)
PP  Pap aa—a,+%2 (@) < . . :
{ 7% fa.'—-ou+%2 H; (2k°'0‘1p Smi)du L # ]

Fobe; [ BT
4 ay (kov “F t')

[pa], - P cos(a; -

@n] =i

214y

ag,) £ tsin cxaz] da,, (4.86)
1 1 1

2

' HO) (ko / F t)dag, (4.87)

[Plz]ij = —jpa_? orta

21
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where the upper sign corresponds to the upper set of subscripts on P or Q, while the

lower sign corresponds to the lower set of subscripts. Introducing the definitions

MHCI QI2C2

L QZIC] M2202

-

Ly, P
K, = (4.89)

P21 L22

the system (4.76) may be combined with that derived via the finite element method

to obtain
Aaa AaI 0 _Baa ¢a 0
A An Anm 0 o1 0
- (4.90)
0 Ag A 0 ¢4 0
Ky 0 0 K, Ya ¢i’f1_
L 4 L p L 2 J

We note that (4.90) can be solved via the CG algorithm to take advantage of the con-
volution operators M and L in reducing the memory requirements. This algorithm

1s given next.

4.3 A CGFFT Implementation

In a manner similar to the previous chapter, the matrix vector multiplications Az
and A°z is represented as a summation of matrices, one corresponding to the finite
element portion of the system and the other corresponding to the boundary integral

portion. Thus, a typical product may be represented as

{s} ={s}Br+ {s}re (4.91)



74

where
1T -
( 0 00 o 21
0 00 O Z9
0 00 0 z3
K, 0 0 K, zq |
and

Aaa Aal 0 Baa [- 2]

A, Ay A 0 2

For the adjoint operations, we have
( 0 0 0 K} 2z
000 o z3

{s}psr = (4.94)
0 00 o0 23

|00 0 Kg || 2|

and

- ; ;
Aga 21 0 0 ( 21
T Aff A3, O z
{s}re = ! S ’ (4.95)
0 ar Az 0 23

Baa 0 0 0 | 24 J
Again, the operation is performed such that only the resulting vector {s} needs to

be stored.

4.4 Scattered Field Computation

In this section the expressions for the scattered field and radar cross-section are

developed for both the circular and ogival boundaries. The scattered field is com-
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puted from the identity

l

6= § {605 [o0] 600 [ G| bar. s

from which the echowidth is calculated.

4.4.1 Circular Boundary

The scattered field expression (4.96) may be written as

¢°(p, ) = = folp, @) + fi(p, a) (4.97)

where

y 2r
folp,a) = —ipafo ¥(pa, a) HP (ko\/p2 + p2 — 2ppa cos(a — aa)) da, (4.98)

and

H{? (ko\/? + p2 = 2ppa cos(a — au))

VP? + p2 — 2ppa cos(a — a,)
[pa — pcos(a — ay)]das  (4.99)

y 2
filp, @) = %Pukofo &(pa, ag)

To evaluate the integrals in (4.98) and (4.99) we invoke the field expansions (4.42)

and (4.51). We have

o+ 4
/ s H (ko\/p2 + p% — 2pp, cos(a — aa)) da, (4.100)

-4
22

1

&
fO(psa) = —Zpa Z"'L’J

and

ay+2 H1(2) (ko\/P2 + p% — 2pp, cos(a - Qa))

ay—

. Nﬂ
J
Ni(p,e) = Zkopa ) ¢;
glofe 2, P+ 72— 20pn cosla — o)
[pa — pcos(a — ;)] da,  (4.101)

where the remaining integrals over the subsections must be evaluated numerically

for arbitrary observation. However, for far-field computations (p — oo), the Hankel
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functions may be approximated as

T
HP (kp) ~ ﬂ—zpj"e""" (4.102)

and since

p for amplitude
\/p2 + p2 — 2pp, cos(a — a,) ~ (4.103)
p — pacos{(a — ;) for phase terms

(4.100) and (4.101) become

. aA 2 . ' N 3
folp,e) = —jF= | = kipe-nkop 3 1p;etkosacosla=a,) (4.104)

i=1

and

. 'Nﬂ ]
filp,@) = p.,/;ko W—zkj—pe"jh" > ¢ cos(a — a;)eikoracosia—a;) (4.105)
0

i=1

Substituting (4.104) and (4.105) into (4.97) we obtain

F] paA 2.7 -3 -Na 1ko po cos(o—a
¢%(p, ) = 4 \/WC Jk”[]Zl/JjeJk"p (o=)

i=1

Na _
+ko D _ ¢; cos(a — a;)et*ore °°’("'°’)] (4.106)

i=1

and from (2.31) the echowidth is given by yields the echowidth

2

(PaA) | & & :
o= o 7 zt/Jje’k""““’(“"“’) + ko Z ¢; cos(a — a_,~)e”‘°"° cos(a—a,) (4.107)
Jj=1 Jj=1

4.4.2 Ogival Boundary

Following the same discretization scheme used in Section 4.2.2, (4.96) may be

written as

Na, Na
#(pr0)=~{ Lofulpaa)+ ¥ bfulpaa)

i=1 3=Na; +1
Na, Na
=Y dfalpe,e)— S $falp, e, aj)} (4.108)

j=1 j=Nal +1
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where
a;+8p
fip(p, o, aj) =/ Go(p, Pap, @y Qq, ) pa,dag, (4.109)
@
a,+dp
fap(p, @, 05) = a—Go(p'pGp’QVOGP)papdaap (4.110)
a, pap
(4.111)
in which
Go(p, Pa,ra, 0q,)

J . .
= —4—H§2) (kO\/p2 + p3, — 2ppa, cos(a — ag,) + Y2 — 2y, (psina — p,, sin aap))

(4.112)
and
0
6_%00(/)’ papa a, aap)
_ jﬁHlm (ko\/p2 + pgp — 2ppa, cos(a — ag,) + yfp = 2y, (psina — p,, sin a,,p))
4 \/p"’ + P2, — 2ppa, cos(a — aq,) + Y2 — 2y, (psina — p,, sina,,)

[pap — pcos(a — ag,) + ¥y, sin aap}

(4.113)

and y., are the corresponding y-coordinates of the arc [,. Using the large argument

approximation for the Hankel function and the approximation

\/p + P2, — 2ppa, cos(a — a,,) + y2, + 2y, (psina — p,, sinag,,)

p for amplitude terms
= (4.114)
P — Pa, cos(@ — 0q,) + Yy, sina  for phase terms
for p — oo, the Hankel function simplifies to
2 _. , .
Hé?)( .ycp_)) -~ J e—]kope—]ko[—l)ap cos(a—aap)=ycp Slnc'] (41]5)

kop
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Similarly,

(2) . » -
L_ Vycp)) [ ] ~ i 2 e—jkope-jko[—l’ap cos(a—orap)=vep sina] COS(a —a )
\ /y ) Yer J TI’kap ap
p

(4.116)

Substutiting these into (4.109) and (4.110) and performing midpoint integration

yields
f ( a a') - _ .Appap 2 e_jkope—jko [—pa,, cos(a—a_,—%ﬂ)_ycp sina} (4 117)
1\, Q;) = ]"—4 __ﬂ-kop .
A p 2] 1 —jko[—pa cos(a—g _ﬁz)_yc sina}
) = k, =22 [ 22 o—ikor P =3 .
f2p(P, a, a]) 4 wkope P
A
cos(a; + 5F — aa,) (4.118)
Thus, from (4.108)
s 1 / 2] ke
Na, . .
{jAIpal Z ¢j+le-"k°[_p°l C°5(°’"°'J-—2‘L)—ycl sina]
N 2
J=1
Na - . .
+ ]'Agpa2 E ¢j+%e-1ko[—002 cos(a—ay =52 )=y, sma]
J=Na; +1
Na, . . | A
+ koA1pa, E ¢j+%e-1ko[-p°’ cos(a=ay=5t)-ve, sina] cos(a —a; — ?)
i=1
Na . .
+ koAZpa2 Z ¢j+%e-1ko[-l7¢2 COS(O—OIJ‘%Z')-!ICQ sma] COS((X _ aJ _ 92—2)}
j=N¢1 +1
(4.119)

the echowidth becomes

Na,
o= SLW,jA]pm Z ll)j_‘_%e‘jko[—l’n, Cm(a_aJ_%L)—yc, sina]
i=1

Na
. a )
+ jAzpa2 Z ¢j+le-1ko[—p°2 cos(a—a,——zl)-yez sma]
2
3=Na;+1
Nol & [ ( 4 i AI
= - s{a—a,— -

+ koAIPa, Z ¢j+%e IKo|~Pa, cOs(a—a,= = ) Yey Slna] COS(OJ' + __‘)_ _ aa])

j=1 9
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Na . s, , A, 2
+ k0A2p02 E ¢]’+le_] o[‘Pn2 cos(a—a,— 2} =Yc, sma] COS(QJ- + T — 002)
j=Nal +1 2 &
(4.120)

4.5 Results

The scattering patterns of several circular and ogival cylinders for both E- and
H- polarization are shown in the figures to follow. Figs. 4.4-4.6 contain circular ge-
ometries both coated and uncoated, while Figs. 4.7-4.9 contain coated and uncoated
ogival structures. The echowidth is computed for each structure and compared to
the results of the series solution for the circular bodies and moment method {13, 14]
for the ogival structures. As seen in all cases, the generated patterns via the FE-BI
formulation are in excellent agreement with the corresponding data based on the Mie

Series and Moment Method Solutions.
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Perfectly Conducting Cylinder R=.5 A (E-pol)
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Figure4.4: E, and H, bistatic echowidth of a perfectly conducting circular cylinder
of radius 0.5\
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Coated Conducting Cylinder R=.5 A (E-pol)
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4.6 Summary

The scattering from targets surrounded by ogival and circular boundaries has
been presented. The finite element method produces the usual sparse sub-matrix,
while a discrete version of the boundary integral results in a dense sub-matrix. The
mathematical boundary enclosing the scattering structure may be judiciously cho-
sen such that the boundary integrals are convolutional. As a result, they become
amenable to evaluation via the FFT and leads to an O(N) storage requirement.
Among the circular and ogival boundaries considered, the circular boundary satisfies
the above requirements. The ogival boundary results in convolutions only when the
source and observation points are along the same arc, while the non-convolutional
cross-terms must be stored efficiently to guarantee the required storage requirement.
When considering circular and ogival structures, the associated circular and ogi-
val boundaries are usually conformal to the structure, thus providing an additional
reduction in the number of unknowns.

To validate the method and associated computer code, scattering patterns of
several circular and ogival structures were given and compared with data generated

by proven methods.



CHAPTER V

The Elimination of Boundary Integral Interior
Resonances in Two-dimensional Finite Element —
Boundary Integral Formulations

5.1 Introduction

The interior resonance corruption of boundary integral solutions for scattering
computations is well known, and its treatment has been a subject of research for the
last two decades. Methods based on the “complexification” of the wavenumber [15],
the overspecification of the boundary conditions [16], [17], and the linear combina-
tions of integral equations [18], [19] have been proposed, while others have focused
on the solution technique rather than the system formulation [20]. Not surprisingly,
when the boundary integral equation is used to terminate the finite element mesh,
the interior resonance corruption persists and this has restricted the application of an
otherwise promising method for large scale computations of highly inhomogeneous
structures.

To demonstrate the seriousness of the problem, Fig. 5.1a shows the backscatter
echo width of a circular conducting cylinder of radius a. for TM plane wave incidence.
The mesh is terminated on a circle of radius a, = 1.0la. on which the boundary

integral equation is applied. The results, displayed as a function of ka,, were obtained
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via the FE-BI described in chapter IV. The unknown in this implementation is
the total field, and as seen the solution is severely corrupted, a difficulty which
persists for other scatterers as well. (For reference, the locations of the interior
resonant frequencies are displayed by the vertical lines at the bottom of the figure.)
The corruption is further evidenced in the near zone scattered field plotted in Fig.
5.1b, obtained by subtracting the incident from the total field generated via the
aforementioned FE-BI method at ka, = 23.586. To render the FE-BI method
robust at all frequencies, it is thus essential to remove the problem associated with the
interior resonances. However, employing traditional methods such as those described
in [2] - [6] requires either significant modifications to the original FE-BI formulation
or substantial computing time, thus affecting the efficiency and performance of the
method.

Further, for the “complexification” scheme proposed in [15] to be effective, we
verified that three different computations are required for each incident angle when
combined with the total field FE-BI system in (4.60). That is, the total field FE-BI
solution must be repeated three times with different complex propagation constants,
all slightly perturbed from the free space wavenumber. Fig. 5.2, the counterpart to
Fig. 5.1, demonstrates how the amplitude of the field quantity varies for a = 1 —
70.001 and a = 1-30.005. In the following section we present a simple modification to
the FE-BI formulation which renders it relatively immune to the resonance problem

without the need to repeat the solution.

5.2 Method

The proposed approach for eliminating the failure of the FE-BI method at in-

terior resonant frequencies is based on the observation that the specification of the
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tangential electric or magnetic field excitation alone at the integration boundary is
not sufficient to yield a unique solution [19]. Therefore, we move the excitation away
from the integration boundary by employing the scattered field as the working vari-
able. This is accomplished by first writing the total fields everywhere in space as a

superposition of the incident field ¢' and the scattered field ¢* as
p=¢"+9¢ (5.1)

The boundary integral in (4.5) may be expressed entirely in terms of the scattered

field as

#0)=-§ {G(m) L,,i

which differs in form from (4.5) by the incident field term. The excitation is instead

7 )] _#5) [gi—acm m] } d (52)

associated with the finite element portion of the system on conduction surfaces and

material interfaces. This becomes clear after substituting (5.1) into (4.10) to obtain

_ 6¢36LVF 6¢36LVF 2, (s11/¢e e re.l ATe
S//{ u[ax ot 6y]+kov¢w,.}dn + [ wegdr

o OWs B OWE] L, o) .
—//{—u[az 5+ By ay]+k ¢W}dﬂ (5.3)

where the quantity ¢ has been left in terms of the total field to ensure tangential
field continuity between adjacent elements which may contain different materials.
The expressions for TM (¢* = E?) and TE (¢* = H?) differ by the application of
the boundary condition on perfectly conducting surfaces. For TE incidence, ¢ = 0
and the contour integral contribution on this portion of the path I'¢ disappears. For
TM incidence, the condition ¢* = —¢' is applied after assembly, and this results in the
elimination of the associated contour integral. Thus, in following the discretization

procedure outlined in section 4.2.1, we obtain the system

Zau{df'}—ZZb Wi} = -Us (5.4)

=1 k=1 j=1
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= f] =]

Oz

¢ on:
Oor

90

06 O

Oy Oy

Note that af; and bf; are unchanged.

J + k§v¢‘N,.°} dQ*

(5.5)

Assembling the final system and applying the appropriate boundary conditions,

we have
[ A Aar
A Apn
0 Au
i M, 0
for TE and
-
Asa  Aag
Al An
0 0
| M. 0

0

-Laa

J

~U;
—44
0

-4

(5.6)

(5.7)

for the TM case. Clearly, now, the excitation is present entirely in the FE region of

the system, as opposed to the BI portion as was the case in the total field formulation

of chapter IV.

The system is then solved with the introduction of a small loss in the propagation

constant appearing in the Green’s function in (5.2) accomplished by replacing k with

ak, where a = 1 — j§. This substantially improved the convergence of the employed

biconjugate gradient solver for the cases considered. However, in contrast to the

“complexification” scheme employed with the total field formulation, the scattered

field solution in (5.6) and (5.7) is relatively insensitive to & (provided, of course, 6 is

very small).



91

5.3 Results

To demonstrate the effectiveness, efficiency and accuracy of the proposed method,
let us reconsider the problem of scattering by a circular cylinder via the scattered field
FE-BI formulation. As seen in Fig. 5.3a, the far field is no longer corrupted by the
fictitious interior resonances and the same holds for the near zone field as displayed in
Fig. 5.3b. The results, shown for @ = 1—30.001 and a = 1—;0.005, are also seen not
to deviate from the series solution, although the convergence rate of the solver varied
significantly as a function of a. For example, the unperturbed (no complexification,
l.e., o = 1) scattered field formulation converged in approximately 0.15N iterations
over the frequency band considered in Fig. 5.3a, where N denotes the unknown
count. For a = 1 — 50.001, the solution converged in 0.13N iterations whereas for
a =1 — ;0.005, convergence was achieved in approximately 0.08N iterations. Note
that this fast convergence rate is due in part to the fact that the discrete boundary
integral occupies a substantial portion of the total FE-BI system. For complex
structures, this may not be the case and the affect is expected to be less pronounced.

Also, we consider the TM illumination of a 5.256 x 5.256A metallic square cylin-
der. For the implementation of the scattered field FE-BI formulation, the boundary
integral was enforced on a circle of radius a, = 3.754)\ so that ka, is the fifth zero
of the Bessel function of order 6. With the incident field direction normal to one of
rectangle’s faces, Fig. 5.4 depicts the corresponding bistatic scattered field obtained
via the total and scattered field FE-BI formulation with @ = 1 — 50.005. Clearly,
the pattern based on the scattered field FE-BI formulation agrees everywhere with
the moment method data. In contrast, the results based on the total field FE-BI

formulation are substantially in error.
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Figure 5.1: Comparison of the far zone and near zone fields for TM plane wave
incidence on a circular metallic cylinder as computed by the total field
FE-BI method and the eigenfunction series. (a) backscatter echo width
vs. ka, — the lines over the horizontal axis correspond to the eigenvalues
of a circular conducting waveguide. (b) magnitude of the TM scattered
field on the enclosure at the resonant frequency ka, = 23.586
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replaced by ka in the BI equation. (a) backscatter echo width vs. ka,.
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5.4 Summary

A method was presented for the elimination of the interior resonance corruption of
the boundary integral in the FE-BI formulation. By expressing the system in terms
of the scattered field and employing a complex wavenumber in the boundary integral,
the effect of resonances were removed. This implementation of the method was shown
to be superior to that associated with the total field formulation presented in chapter
IV in that only one sample per frequency was needed. Though the development
was implemented for the two-dimensional FE-BI formulation, it is applicable to the

three-dimensional one as well, as seen in chapter VI.



CHAPTER VI

A Finite Element — Boundary Integral
Formulation for Axially Symmetric Structures

6.1 Introduction

A finite element — boundary integral approach is applied to the case of axially
symmetric structures. The method follows the same procedure outlined in section
2.2. In this implementation, the coupled potential equations [21] are discretized via
the usual finite element method, and the resulting system is augmented by a discrete
form of the Stratton-Chu equations [22]. The storage reduction associated with the
boundary integral is achieved by exploiting matrix symmetries and the final system
is computed by employing a conjugate gradient solver.

In this chapter, the formulation for the FE-BI is described for axially symmetric
scatterers. The results presented demonstrates the accuracy of the method along

with showing its limitations.

6.2 Finite Element Formulation

In this section, we derive the analytical coupled azimuth potential (CAP) equa-
tions [23] which are then discretized via the finite element method. A consequence

of the formulation is a line singularity, which tends to corrupt the computed fields
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Figure 6.1: The general axially symmetric surface with source (primed) and obser-
vation (unprimed) points and the corresponding unit vectors

for scattering domains incorporating lossless media. A regularization approach is
suggested for its removal.

6.2.1 Analytic CAP Formulation

Maxwell’s equations in a source free region are given by [12]

V x E(F) = —jwuH (6.1)
V x H(F) = jweE (6.2)
V-D(F) =0 (6.3)
V-BF) =0 (6.4)
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For axially symmetric media such as that indicated in Fig. 6.1, the fields may be

represented by a Fourier series in the cylindrical coordinate ¢ as

EF) = Y &Enlp,z)em?
nH(F) = Z hm(p, 2)e’™®

where

Em(p, 2) 1 /Oh E(F)e™™dg

T o

1 2r —im
hnlp,2) = o= [ nH(F)emds

Up substituting (6.5) and (6.6) into (6.1) and (6.2), we obtain
5 [jmhmz — %(Rhmd,)] = J&lmp
ili [jmemz - %(Renw)‘ = —Jtrhm,
R[Ghmy = Zihm:] = jer(Remg)

R [a”az'emp - %emz: = —jpr(Rhmg)

% [jmh""P - aa_]-t(Rhm¢) = —jcremz
Ilq‘ [jmemp - %(Remcs)] = Jprhm:
with

R=kop, Z =koz

(6.7)

(6.8)

(6.15)

to be referred to as normalized coordinates. Substituting h,,, of (6.14) into (6.9)

gives

emp = j fm [mZk(Remg) + Ritr 5 (Rhms)]

where

-1

fm = [R2x2 - m2]

(6.16)

(6.17)
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and
&2 = e,
Analogously, substituting e,,, of (6.9) into (6.14) yields
hims = jfm [mZp(Rhmg) + Rey 5 (Rems)]

while a similar procedure for combining (6.10) and (6.13) yields the pair

ems = fm [ M35 (Rems) = Ritr Z5( Rhimo)]

hmp = fm [Mg(Rhmg) = Rer &5( Rems)|
Equations (6.16) through (6.21) may be expressed in compact form as

¢ X &n(R,2) = jfm [md x Ve — 4 RV i3]

6 x kR, Z) = j fm [m X Viton + €. RV .|

¢Em(RaZ) = ¢¢/R

¢ hm(R,Z) = Yu/R
where

_ ~ 3 L)
Vt—pﬁ+za—z-

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)
(6.23)
(6.24)

(6.25)

(6.26)

and . and ¢, are herein referred to as the azimuthal potentials. Rewriting (6.11)

and (6.12) as
RV, (¢ X k) = —jesthe

RV, . (‘;’ X Em) = JpsPn

(6.27)

(6.28)

and then substituting (6.22) and (6.23) into them produces the CAP equations

Vi [fmle RV e + md x V)] + "}‘2/” =0
Ve [fmlu B = m x V)] + L2 = g,

(6.29)

(6.30)
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This system may be written in operator form as

Ly =0 (6.31)
where
. & Afmd x ¥
I = Vt [fmeerAt] + R mvi [f ¢ X il (632)
-mV, - [fm¢ X Vt] \YE [meert] + %
and

=M wl (6.33)

The three dimensional axially symmetric problem has, thus, been cast into a
two-dimensional one and its discrete representation is formulated in the following

section.

6.2.2 Discretization of the CAP Equations

To discretize (6.31), we first enclose the generating contours of BOR in a fictitious
boundary ' (=T’ +T.+T';) as shown in Fig. 6.2. The region interior to I is divided
into N, triangular elements and within each element the corresponding weighted
residual expression is

/ Ni(R,Z) Ly dS° =0 (6.34)
SC
where N is the usual shape function [5], so chosen to satisfy the Dirichlet boundary

condition of 3. and ¥, on I',. Substituting the first of (6.31) into (6.34) gives

€rYe
R

// Ny {Vz | fmle RV e + md x Vo] + } dSc =0 (6.35)
SB
and upon employing the identity

NiV, - A’ =V, - (NFA") - A’ - V,N¢ (6.36)



102

Figure 6.2: Cross section of a generating surface enclosed by the fictitious boundary

r

gives the expression
J [0 (Nt (e RO b+ x W)}
SC
7 Crwc
—fm (R e+ m x Vo) + v N°]dS° (6.37)
Furthermore, by invoking the divergence theorem, (6.37) may be written
T CNie e
// { [~ (- RV e + md x V)] - WoNE + %} ds
AR [N¢ fm (6 RV . + m x V)| di° = 0 (6.38)

where 7 is the outward normal along the boundary C* of the eth element. Finally,

on using (6.22) these may be simplified, yielding

-// { fm Er}’zvt"l)c + qu X th)h)] . VtN,c + erI/)éNie}dse

- }f, NE(Ghme)dI® = 0 (6.39)
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where
Rt =t b (6.40)
with
i=fnxo (6.41)
Equation (6.39) and its dual constitute a weak form of (6.31) over the eth element.
The development thus far has employed the total potential as the working vari-
able, but may also be expressed in terms of the scattered potential as well. To this

end, any function ¢ satisfying Maxwell’s equations may be written as a superposition

of the incident and scattered potentials, i.e.,

Ye = Yo + ! (6.42)
Yh = ¥ + i (6.43)
where the superscript s denotes the scattered potential and i denotes the incident

potential (i.e., that potential present in the absence of the scatter). Substituting

these into (6.39), the corresponding expression in terms of the scattered potential is

/ / { [~ fm (e-RVep! +mé x Vapr)] - VeNe + "‘ﬁN‘e } dse
Se

= § Ne(hmdie =

_// {[—fm (G-RV:#’Z +mé x V,d);;)] - VN + %AE} dse (6.44)
SC

where the contour integral has been left in terms of the total field until the final
system assembly (of equations) is performed.
To form a discrete system of equations, the potentials in the e element are ex-

pressed as

3
YR, Z) = Y _N;(R,Z) {42} (6.45)

=1
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Vi(R,Z) = ZN‘ R, Z) {¥1); (6.46)

and upon substituting these into (6.44) gives

1) [ o2
_mfm¢ X V(N - Vth{l/)h}j} dse]

-f ¢ (hme)dl = (U (6.47)

where {U}{ is given below. Assuming ¢, and p, are constant within the element,

(6.47) may be written as

S [er lals {w2)s = 5 wids] = N Gl + {U): (6.48)
j=1
where
e -4 ¢ NeNe €
[a)s; = S// [—meV,Ni VNS + = ]dS (6.49)
Bl = [[mindx ViNE - U.N¢ ds¢ (6.50)
SC

e i 2 i e, EVINS .
Uy = —S/f {[—fm (e BVbi 4+ mé x V)] - VN + 2 }dS (6.51)

These constitute the equations for the eth element, and the final system is assembled
by summing over all elements in the discrete model.
Before pursuing the step of system assembly, explicit expressions for (6.49) and

(6.50) may be developed by first writing them as

85+ NENS e
[a]fj=—%ﬂ—’)h+ S/f 5 1dS (6.52)

and

b = -m P (6.53



105

where the linear shape function and its coefficients are given by

of +BiZ + iR

Nf(R,Z) = S (6.54)
af = Zig R, — Z{,Ri,, (6.55)
5{8 = Rf+1 _Rf+2 (6-56)
v o= Zf+2’“ Zs'e+1 (6.57)
and
R €
Sc

1 e

10 =S/e/ mds (659)

Evaluating (6.58) and (6.59) over a triangular element yields

I, = —% Z:[If(m) + I; (—m)] (6.60)
lo = & S {75 (m) — T5(-m) (6:61)

=1
with

(kR + m)log(s RS + m)

ﬂf-{-l f+2

I;(m) =

T

(6.62)

The second integral in [a]{; may be computed numerically via gaussian integration.
The sums appearing in Iy and I;, however, experience problems when an element
edge is parallel or nearly parallel to the axis of revolution (i.e., element d in Fig.
6.3). In this case, two of the three terms have denominators which are nearly zero,
resulting in cancellation errors upon their summation. To avoid such errors, the
sum of two consecutive terms, i.e., If + I:,,, is carried out by first expanding the
numerator of either term 7 and then performing the addition analytically. In this

way the offending term is canceled and the final result is well behaved.
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Figure 6.3: Typical triangular elements in the vicinity of the line singularity at Ry =
2 for real

Proceeding then, we note that the Taylor series expansion of zInz about zp is

rlnz=zlnzo + (z — z0) [1+S($;x0)] (6.63)
0
where
o) ( 1)n+1 'n
n; "t D) (6.64)

and the sum converges when |z — 29| < R, where R is the radius of a circle centered
at zo in the complex z-plane for which zlnz is analytic [24]. The series may be
truncated in N terms when the error, given by the ratio of the Nth term to the first

term in the series is less than some tolerance ¢, or more explicitly when

2yN 1

For € = 1077, a fit to the nonlinear function in (6.65) for |y| € [0.1, 0.7] is
N(y) = Round(e!(9.97633¢M — 5.94387)) (6.66)

Once N is known, the series is evaluated efficiently using Horner’s rule.

Employing the expansion (6.63) to the partial sum Z;(m) + Zi+1(m) yields

ij-+2+m)ln(nR..“+m) 1 _ S(
L)+ Tn(m)=y " ~R.+,+m
(xRi42+m)In(xRi4+m)
W [ +2 ;:';3.‘+l + 1 + S(KR Tm )] form 2

] form 1
(6.67)
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where form 1 was obtained by expanding the numerator of Z;(m) about Ri,,, while
form 2 results by expanding the numerator of Z;,,(m) about R;. For elements well
away from the line singularity, either form is valid. However, as kR + m — 0, the
radius of convergence R is reduced to zero due the branch point of (k R+ m)In(xR+
m). The method for choosing the appropriate form may be done numerically by
computing the value argument of S in (6.67) for each form. The one which gives
the smallest value y € [0.1,0.7] in S(y) is chosen for computation, since the series
will converge the fastest for it. If y falls in the range 0.7 < y < 1, the series (6.64)
will still converge, but very slowly as y approaches 1. If |y| > 1, the series will not
converge and the associated form (1 or 2, or both) will be invalid. Note that neither
of them is valid if both points lie along the line singularity (in which an infinite result
is obtained) or if one lies above it and the other below (as in element b of Fig. 6.3).
In the latter case, (6.60) and (6.61) must be evaluated directly, but a new mesh may
be necessary for the former. An approach for bypassing this difficulty is discussed in
the following section.
Summing over all elements to obtain a solution for the entire computational

domain , our system becomes

N. 3 N. N.

2 2 (6 (i) = 8 (] = X [ V7 Gl 4 32 [ NE ()l

Ne N,
n E/r N (Ghme)dl + 3_{U}S (6.68)

e=1
Note that since Nf and hp, are individually continuous between adjacent elements
(and the same is true for their product), the contour integrals cancel everywhere

except on the domain boundary I'. Accounting for Nf = 0 along the z-axis, this
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system combined with its dual may be written in block matrix form as

’A;a 0 Ay —B,, 0 —B.,z. P {zb:}aﬂ {Ula
0 Ay, Ay 0 —B. —-Bg || {¥} {U}.
ta A% Ay —Bre —Bre =By || {¥2hi| [ {Uh
B 0 Bu At 0 a4y ||wn.| |00
0 B. By 0 Al I {vi)e {V}.

| Bre Bre Bu Al Te m | Wi [V

T
+[23’==1 JriiNE bedl 0 0 —XNe [ iNF e dl 0 o]

T
[0 S8 N b dl 0 0 — 5, fo NS emedl 0]

(6.69)
where

Ne

A =) € laly (6.70)
e=1
N.

[A¥]l = Z: pr lali (6.71)
N.

[Blu = \; [b]¢, (6.72)
N.

U = 2 {U}s (6.73)

where the i7th member of the eth local element matrix is related to the kith member

of the global matrix by a node-element connectivity transformation function p as

k = p(e,1) (6.74)

= p(e, ) (6.75)

In (6.69) the subscript I refers to group of nodes in region the 2 excluding T', and the

subscripts on A“#, B, U and V refer to the various regions of  and its boundary.
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For example, A, refers to the matrix resulting from the interactions between nodes
in region ) and on I', whereas A, refers to the matrix resulting from the interaction
of the nodes on I'.. Each matrix is sparse, having nonzero elements when the nodes
share a common element. Note also that V is the dual of U, which was defined in
(6.51).

Two options exist at this point for evaluating the contour integrals. They may
either remain on the excitation side and the tangential modal fields expressed in
terms of a condition on I'y, or the tangential fields may be expressed as unknown
scattered potentials and moved into the matrix. The second is required for the FE-BI

formulation and is given by

]
FA;G 0 A, -B, 0 —Byg 0 —C. || {¥). {U}a .
0o I 0 0 0 0 Cu O {v:h —{¥i)e
Ay, Ay Ay —-Bie =B =By 00 {#ile | | {Uk
B 0 By A4 0 A4 0 0 ||| | .
0 B. By 0 AL, a0 0 {vitr {V}
| Bre Bie Bu Al Te m 0 0 | {4 | V]
| {¥he)e |

T
[ S fo NeGRL)A 0 0 — TN o, Ne(iehdl 0 0]
(6.76)

where the boundary conditions ¥, = 0 and e,,; = 0 on I', were also enforced. Addi-

tionally,

Ne Nch
Clu = kL die 7
(Clu ;/r 7 (6.77)
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and
3
Yo = jRep, =3 N5 {y2)S (6.78)
i=1
3
Yhe = JRhy = Y N5 {¥},)5 (6.79)
=1

This form is now suited to augmentation by either a discrete form of a boundary

integral equation explored in section 6.3.

6.2.3 An Improvement to the Finite Element Formulation

The integrand of each of [a]; and [b]¢; in (6.49) and (6.50), respectively, becomes
singular when R = %2 for real «. Since we are only concerned about solutions
for which m > 0 (those for m < 0 are found via symmetry considerations), only the
positive sign is considered, or Ry = ™. The location of the singularity is independent
of Z and is hereafter termed “line singularity.” The line singularity intersects any
element e containing the radius R; (as seen in Fig. 6.3 for a homogeneous medium),
or is near an element if Min(|Ro — R¢|) is small (not defined now) for the normalized
radii of element e, R for i € [1,3]. The origin of this singularity has been discussed
previously in [23] for the CAP equations.

For elements containing Ry, [a]f; and [b]¢; gain an additional residue contribution,
automatically included by the use of the logarithm of (6.62) in the sums (6.60) and
(6.61). However, for elements oriented nearly parallel to the line singularity, as in
element b in Fig. 6.3, the contribution to (6.60) and (6.61), and consequently [a];;
and [b]5;, become large. In the case of element a in Fig. 6.3, they become infinite.
Large matrix elements are associated with the slow convergence of the conjugate

gradient solver and inaccuracies in the resulting solution. Presented here is a way to

avoid this problem.
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To understand the nature of the problem, we recall (6.23)
$ X Bm(R,Z) = jfm [md x Vetn + & RV3be] (6.80)

the right hand side of which appears in (6.44) and ultimately in [a]f; and [b];; after
discretization. Since é X hn, must remain bounded everywhere in space (barring
edges of perfect conductors), the right hand side of (6.80) must also. Clearly then,

the bracketed terms involving 1. and 1, must combine to cancel with the singularity

1

in f, = GRIm (R The finite element discretization, however, separates these

two terms and each will individually become large when an element edge is nearly
coincident with the line singularity.
we first define the integral

To regularize [a]f; and [3]¢;,

=[] fm(eROw2) - OuNzdSt + [[ £ (md x Vi) - OuNzdST (6.81)
g 3¢

which appears in a portion of (6.44). Each of the integrals in (6.81) must be regu-
larized, and in doing this we must subtract and add a term from each of the form

h(Z, Ro)

kR—m

(6.82)

where h(Z, Ro) is the factor of the integrand which is well behaved at R = Ro.

Applying this technique to (6.81) gives

1 =S/e/ KRI— — [CrRth’: . Vng _ Cr(Z7 RO)ROth’:(Z,RO) . VtN,'e(ZaRO)} dse

kR+m KRo+m
b x Vab? b x V,bi(Z,
+// ani m [(ﬁn; +t:7/}1h - ViN; - : x,;]%:/)l(mRO) 'V‘Nie(Z’RO)] =
Sc
1 [&(Z, Ro)RoViyp2(Z, Ro) + mé x Vi (Z, Ro) . .
+//KR_m[ )4 ]-V:N,-(Z,Ro)ds

(6.83)

where h(Z, Ry) for each integral is clear by the argument (Z, Ro). Where not explic-

itly shown, all functions exhibit a (Z, R) dependency.
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The key to implementing this method is the elimination of the third integral in
(6.83). Note that the numerator in the integral of this terms is simply the bracketed
factor in (6.80) evaluated at R = Ry. As mentioned before, 43 X by (Ro, Z) must be

finite, the bracketed term is zero at R = Ry. Thus,

mé x Viu(Z, Ro) = —€.(Z, Ro)RoV b Z, Ro) (6.84)

The third integral of (6.83) vanishes when the expression is substituted into its
integrand.
After following the usual discretization of the azimuthal potentials, (6.83) may

be written in discrete form as

3 e 1 ¢ RV, N¢ .
I=§{¢°}j4/nR—m[xR+ Vil

_Cr(Za RO)ROVIN;(Z7 RO)
kRo+m
¢ A

+ Z{wh} // VN

kR—ml kR+m

VNE(Z, Ro)] dse

_qS x V. N$(Z, Ro)
KRy +m

CVNE(Z, Ro)] ds®

(6.85)

For linear shape functions, the gradients are constant (as well as ¢,) and are factored

out to yield

_l{zb’ / / Vs - VuNgds®

1=

+ Z{w,.} // ¢xVN . V(N dS®

(6.86)

which are clearly regular when R = 2. Thus, the matrix elements in (6.49) and
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(6.50), may now be written

R 1 . . NINS .

lal; = S// [~y Ve = as (6.87)
e 1 n e e e

s =[] s x V- vuvias (6.89

These were implemented, but did not work very well. Note that since the potentials
¥e(Z, Ro) and 9;(Z, Ro) were expanded in terms of linear functions, their respective
gradients are are constant everywhere in the element independent of R and conse-
quently independent of Ry. Since the derivatives Vi, and V4, are constant over the
element, this approach to regularization is of low order. To improve the accuracy, the
functional dependency of this on R must be increased and for the existing discretiza-
tion scheme, this may be done by refining the mesh in the vicinity of the singularity.
This, however, is not a realistic option for frequency sweeps for scatterers containing
lossless materials. Using higher order shape functions or employing the modal field
as the working variable (i.e., Vi), = V(Reng) = RVemg + emgV R) would alleviate
this problem. It is interesting to note that given v, = Rens, a linear variation in
Z of emy corresponds to the same in .. However, a linear variation of e,4 in R
corresponds to a quadratic variation of the same in .. But since %, is expressed in
terms of linear shape functions here, the radial behavior is lost.

In summary, then, we have developed a method by which to alleviate the problem
associated the line singularity at Ro = 2 for real x. This not only eliminates the

need for a residue contribution to [a]f; and [b]¢, but also prevents them from ever

¢,
1)?
becoming infinite. In addition, a direct consequence is that these element matrices

are now purely real for scatterers containing lossless materials, which is not the case

for the traditional formulation presented in section 6.2.2.



114

6.3 Boundary Integral Formulation

In the previous section, a weak form of the wave equation was developed for
scattering bodies in §2 and bounded by I' =T', 4+ I'. + I',. The boundary conditions
on I'; and I'; have already been included in the system (6.76). The resulting discrete
system remains incomplete, however, since the boundary conditions (which provide
a relationship between the tangential E and H fields) on the exterior boundary T,
remain unspecified. The Stratton-Chu integral equation (S-C) provides the necessary
relationship for source and integration points along I'y, when the integral equation
is expressed in terms of fields tangent to the surface of revolution. By employing a
Fourier series expansion of the S-C and thereafter discretizing it on Iy, the resulting
system provides the needed equations for solving (6.76).

As a preliminary step , the electric and magnetic fields in the unbounded region

are represented by
EF) =EF+E (7 (6.89)
HF) =T F+HF (6.90)

where F(F) and F(F) are the incident fields and the scattered fields are given by

the Stratton-Chu equations [22]

B = ff {~kli xnoll'#)]o(r7) + [ v x ) vyt
S’ °
+[i x E'(7)] x V'g(‘,?’)}dS’ (6.91)
Ir3 /= . ~t T8 4 —_ 1 ~/ T8t 1 foe =
noH*(F) = ﬁ{;ko[n < E®)or ) - [7- V< B V()

+[3! x noB(7)] x V'g(F,F‘)}dS’ (6.92)
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where 7 and 7 are the source and observation points, respectively and

o= ikolF=7'|

F,7) = ———— 6.9

is the free space Green’s function. In this form, all field quantities are tangent to
S’. Since in the development of the discrete boundary integral system the source
and field points reside on the surface S, it is convenient to remove the singularity
at ¥ = ¥ by expressing the integrals in (6.91) and (6.92) in terms of their respective
principal values as
1B = ;{j{—jko [ s no T 7)) (7,7 + = [ 9 o (7] Vgt 7)
+[# x E'(7)] x V’g(",F’)}dS’ (6.94)
bl - § (it [i* x B')] ar,7) = < [V x B°(7)] Vo)
+ i x noB'(7)] x V’g(F,?)}dS'(G.QS)
Looking back to (6.76), it is clear that two additional equations relating the
unknown potentials 2, ¥;, ¥, and 1], are necessary to form a complete system.
This may be achieved, for example, by using the { component of the modal form of
(6.94) and the ¢ component of the modal form of (6.95). In fact, many combinations
are possible but for simplicity and symmetry, the ¢ component of (6.94) and (6.95)

is considered below.

6.3.1 Derivation of the Modal Boundary Integral Equation

In a fashion analogous to the finite element formulation, the development is pro-
vided explicitly for (6.94) and duality is employed to obtain the corresponding ex-
pression for (6.95). First, consider the general surface of revolution indicated in Fig.

6.1 whose tangential unit vectors are denoted by ¢ and . The unit vector 7 subtends
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an angle v with the z-axis, and # subtends an angle v’ with the z-axis. With reference

to Fig. 6.1, the various unit vectors are given by

n=Zcosvcosd+ ycosvsing — isinv (6.96)
¢ = —2sing+Jcosg (6.97)
{ = Zsinvcos¢ + §sinvsing + 5 cosv (6.98)
% = tsinvcos ¢ + fcosvcosd — ¢sin (6.99)
§ = isinvsin ¢ + A cosvsing + ¢ cos ¢ (6.100)
2 =1{cosv —fisinv (6.101)

Expressing the primed unit vectors in terms of the ones results in

t = {'[sin v’ sin v cos(¢ — ¢') + cos v cos v']

+ 7’ [cos v'sinv cos(¢ — ¢') — cosvsinv'] + ¢’ [sinvsin(¢ — ¢')]  (6.102)
7 = {' [sin v’ cos v cos(¢ — ¢') — sin v cos ']

+ 7' [cos v' cos v cos(¢p — ¢') + sinvsinv'] + ¢’ [cosvsin(¢ — ¢)]  (6.103)
¢ = —#'sin(¢ - ¢) + ¢ cos(¢ — ¢) (6.104)

which clearly reveal the dependency of the unit vectors on the azimuthal variation

é — ¢'. Further, the following identities can be shown to hold:

$-Vig=—¢-Vg (6.105)
¢ (4 x noH') = —noH}sinv'sin(¢ — ¢') — noH; cos(¢ — ¢') (6.106)
(V' x oH") = & [~ Z(p'moHE) + 5 (n0H])] (6.107)

¢ (' x ) x V'g] = [#'Elsin(¢ - ¢') + ' E cos(¢ ~ ¢)

+ ¢'E} cosv'sin(¢ — ¢')] - V'g (6.108)
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Using these in (6.94) gives

27
1B37) = £, {ikolnotzsin'sin(é — ¢) + no; cos(s - 6o 7)
1 ) o |
~ ko [—%(p’noH;) + a%:(’?on)]qﬁ -Vg(F,7) + [2 E;sin(¢ — ¢')

+ 7'Ej cos(¢ — ¢') + &'E; cos v’ sin(¢ — ¢')] . V'g}p'dd)'dt'

(6.109)
and by carrying out the derivatives of the Green’s functions, we find
1 2= . . [ ’ s ’ —
§E;(F) = ][l“a ][0 {]ko [TioH;, sinv'sin(¢ — ¢') + noH; cos(¢ — ¢ )]g(F, )
1 A s 1 dg
- ]-TO[—%(P noH3) + o5 (noH, )] sin(¢ ~ ¢’ )EE
+ (-—E,’(z — 2')sin(¢ - ¢') + E;{cos(q& — ¢)|(z = 2')sinv’' — (p — p') cos V']
— 2pcos v’ sin®( ¢ _2 ¢ )}) %j—éﬂ}p'dd)'dt' (6.110)
in which
Ro=/p? + p2 — 2pp' cos(¢ — ¢') + (z — 2')? (6.111)

The integrand of (6.110) is expressed explicitly in terms of ¢ and ¢’ and is now

suitable for harmonic decomposition.

To generate the corresponding modal integral equations in terms of the Fourier

coefficients, the fields and Green’s function may be expanded as

E@= Y 2™ (6.112)
noH(7) = Z 7S (p,2)e™® (6.113)
gW(F, ) = Z o) (p,p', 2, 2')eim(#=#) (6.114)

where

€ (p,2) —][ (p,u,z)e” ™ du (6.115)
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Folp ) = 22 f* T (pu,2)e 7™ d (6.116)
‘Ke_Jkoﬁ
9O, p',2,2") = —-][ = cos(nu)du (6.117)
0 47 R
—]koR
dV(p, 0’ 2,7") = —][ cosu 3 cos(nu)du (6.118)
—JkoR
g (p,p',2,2") = —-—][ sinu 7 sin(nu)du (6.119)
™1 dg
O (p,p', 2,2 ][ = 6.120
W (pust 1) = ORdRcos(nu) (6.120)
dW(p, 0 2,2') = L ][1r cosul~ d~ cos(nu)du (6.121)
’ Tk J o RdR
T 1d
dP(p,p,z,2") = _kag ][0 sin uﬁé sin(nu)du (6.122)
in which
= \/p2 + p"? = 2pp' cosu + (2 — 2')? (6.123)
Substituting these into (6.110) yields
o 2r
: Z el s(p, z)e’™ = E E e’"¢f ][ {]ko [hm¢ sinv'g? + h2,,g(M)

- o &) + imbs] kgl

— ez — 2)k2gl? + €2, ,k3(p' cos v'g()’

n

~ pcosv'g, + (z — 2')sin v'g,(ll)')} el g dt’ (6.124)

where t' is the parameter along the contour I', and increases in the clockwise direction
as shown in Fig. 6.2. Further, upon multiplying each side by e=P% and integrating

over (0,27) to extract the mth harmonic equation gives

2 eme(p; z) = 27 ][[‘ {J.ha vag(z) -78!'( ’h:nas) @ 4 (jh:nt)[gv('r}) +jmg,(,f)’]
+ e sko(p’ cos v'g!) — peosv'g. + (z — 2')sinv'g!))

— emi(2 - 2')kogg)'}kop’dt' (6.125)
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after also combining similar terms and where we have used the identity

2 , 2r m=n
/ eI m=m)¥ gt — (6.126)
° 0 otherwise
Introducing the normalized coordinates
R=koyp R =kop
Z = koZ AR k()Z,
0 0

in (6.125) and replacing the field quantities with the azimuthal potentials yields

=l = i—” fra{wz [7sinv'g$D] = (Fwt) RG] + v, [o) + jmg®]

+ 92 [R cosv'g’ — Reosv'g,, +(Z — Z')sinv'g)]

+ 94 [i(Z - Z’)gff"]}dr’ (6.128)

This equation and its dual form a pair of integral equations to be imposed at the

mesh termination boundary. Their discretization is considered next.

6.3.2 Discretization of the Modal Boundary Integral Equation

In discretizing the modal boundary integral in (6.128), the contour T, is first
divided into N, elements each of length A®. Within the eth observation element, the

parametric representation

R = R + 7sinv® (6.129)

Z = 77 + T cosv® (6.130)

is adopted as shown in Fig. 6.4 and is consistent with the required counterclock-

wise path traversal of I';. Likewise, within the source element ¢’, the parametric
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element e element ¢’

R N (1)

—->

Figure 6.4: A typical pair of source (¢’) and observation (e) elements associated with
the discretization of the boundary integral equation

representation
R = R 4 7'sinv® (6.131)
Z'=Z¢ + 7' cos v® (6.132)

is employed. In terms of the parameter 7/, potentials within each boundary element

are represented as

Na 2
u(r') = z_j X_: NE () {u) (6.133)

where u represents any one of ¥2, 2, Y2, or ¥, and

e _ 1- T,
M) = —7 (6.134)
',y TI 5
N; = 1
() = (6.135)

are linear parameterized functions of 7. (Note that the linear basis functions are

employed in the finite element discretization.) Employing the method of weighted
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residuals over the eth observation element and Galerkin’s technique to (6.128) gives

NeN Na . L,
Sy [0 1D > (L (g Neng [sinuig]
e'=1j=1 =1;5=1
—{i)¢ Nf(w”f) [JR’gf,'f’] + {55 NeNE [g) + jmgl?Y]
+ {zl):};' NfNj‘I [R’ cosv'g{)) — Rcosv'g, + (Z — Z')sin v’g,(,:)’]

(v} NeN [i(2 - 2)9 ] far'ar =0 (6.136)

In deriving the first term in equation (6.136), it is useful to note that () may be

written

Pir) = s ¥2(r")é(r — 7')dr’ (6.137)

where § is the Dirac delta function. Substituting (6.133) into (6.137) yields
s = 3 () NS e = e
e'=1 ,1—1

= E sz};'N;‘(r) (6.138)

e’'=]13=1

Taking the inner product of (6.138) with H‘P yields

N‘(T) _ oo [ NE(T)NE(7)
[ =) ZZ{w}/_R—dr (6.139)

e'=13=1
as expected.

The system (6.136) may be written in compact matrix notation
No 2 ' ' ’ ' ' '
S 3| el w2 + ML R + (L5 (w25 + M (k)] | = 0(6.240)
e'=1j=1
where we easily see that

ee' e NCNc 7r Ae Ae‘ ’ ’ !
[Le];; = —-;—/(; RJ ——2dr + 0/() . NiN; [R’cosv'g,(,}) — Rcosv'g,,

+(Z - Z2")sinv'g{))’ ]dr'd‘r (6.141)
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[Mélf;’ = /A’][A‘ {N°N° [] sin v’ (2)] Nf(EZN ) [ R’g(z)]}dr'dr(6.142)

L = i— [ NN iz - 2062t (6.143)

M55 = i—W/oA : NeNE g + jmg@'| dr'dr (6.144)
0

Each matrix of the form [A¢]f;, can be termed “element interaction matrix” (after
the finite element term “element matrix” for the case e = ¢’), since it represents
the interaction between the source element ¢’ and the observation element e for
t,7 € 1,2 of the local weighting and expansion functions, respectively. The numerical
evaluation of the integrals in (6.141) - (6.144) is performed by breaking the integral
into two integrals with continuous integrands and performing midpoint integration
for each of them. This applies to the integration in 7' as well as for 7. When the
source and observation points coincide, an average value is computed by moving the
observation point % away from the sub-cell center. This has been shown to work
well in [25], and avoids the need for elaborate self-cell evaluation techniques. In all
cases, Gaussian quadrature is employed for the ¢’ integration in (6.117) - (6.122).
The local “interaction element matrices’ may be assembled to form a global
boundary integral system in a fashion analogous to the finite element method by

first summing (6.140) over all observation elements e as

No Na 2
S5 S ULl (e + Ml () + (L5 iy + M (i) | = o

e=1e¢'=13=1

(6.145)

where the local element subscripts 7, j have been replaced by their global counterparts

k,l and are related by the node-element connectivity transformation function q as

k = g(e,1) (6.146)

I =q(¢,J) (6.147)
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A(k,1) =0 k, 1€ {1,N,}

Doe=1to N,
Doe =1to N,
Do =1 to 2
Do j=1to 2
k= q(e,1)
l=q(¢,7)
Form [A]f]’

Ak, 1) = Ak, 1) + (AL
End Do
End Do
End Do

End Do

Table 6.1: An algorithm for the boundary integral system assembly for a generic
element interaction matrix [A]5f

In Table 6.1 is illustrated an algorithm where a generic matrix [Ad,}f;’ (where A
represents any of Ly, My, Ly or M;) is assembled to form a global system. This
algorithm differs from that of the finite element method, in that the loop in €’ is
eliminated.

The final FE-BI system is formed by augmenting finite element system with
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(6.145) and its dual giving

[ 4, 0 Ay B 0 By 0 —Culliw.] [ (o1 ]
0 I 0 0 0 0 Caw O {v:)e —{¥i}e
fa Al. Ay =B —-Bie -Bu 0 0 {vis {Uhs
B 0 Bu A, 0 Ay 0 0 ||{yh| | (Vi
0 Be Ba 0 an A% 0 o || @ | | v
Bia  Bic Bu Al . An 0 0 {vis {Vh
Ly My, 0 0 0 0 L M {vala 0
| -My Ly 0 0 0 0 -M, L |[{et)| [ o |

T
+| e o, NG 0 0 — 5N, fo NeGGeb )t 0 0 ]

(6.148)

which can be solved by the conjugate gradient method. Before considering different
solutions of this system, we must develop the harmonic coefficients of various sources

of excitation. This is considered next.

6.4 Sources of Electromagnetic Radiation

The modal forms for a plane wave excitation and an electric dipole source are
developed in this section. The former is employed for scattering problems while
the latter may be used for both scattering and radiation. For both cases being
considered, the resulting expressions for the azimuthal potentials are used in the

expressions developed in section 6.2.
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6.4.1 A Plane Wave Excitation

A plane wave incident at angles (8*, ¢') and observed at ¥ = (r, ¢, =) (see Fig. 6.1

) has the form

T(0', 6 p, 6, 2) = gle=o

(6.149)

(6.150)

where ¢' is perpendicular to the plane of incidence and 6’ is in the plane of incidence.

Expressions (6.149) and (6.150) may be written as explicit functions of ¢ by first

writing the argument of the exponential function as

Eo T = kor(—fl . 7‘:)

= —kg [psin o' cos(¢ — #') + z cos 0‘]
since

7

Zsinfcos¢+ ysinfsing + 2 cos b

Al

3 = zsin6' cos ¢’ + §sin O sin @' + 3 cos §'

Also, making use of the unit vector transformations

¢ = —isind' + §cos

6" = £cosb cosd' + Fcosf'sing' — ;siné’

8>
I

ﬁcos¢—q3sin¢
y = psing + <2>c03d>

z2=2z

(6.149) and (6.150) can be rewritten as

(6.151)

(6.152)

(6.153)

(6.154)
(6.155)
(6.156)
(6.157)

(6.158)

ﬂd’(ei; P, ¢ _ d)i’z) — [ﬁ sin(d) _ ¢|) + &COS(d) _ ¢t)] ejko[psine' cos(¢—¢')+z cos§')
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(6.159)

(00,6 — &', 2) = [[) cos 0" cos(¢ — ¢') — dcos 8 sin(¢ — ¢') — Zsin 0‘]

Ikolosin 6" cos(¢—¢*)+z cos §') (6.160)

These may be expanded into a Fourier series in the parameter (¢ — ¢) by first writing

(6.149) and (6.150) as

(00,6 ¢',2) = Y Tnmg(8'5p,2)e™=9) (6.161)
To(0';p,6—¢',2) = > Tma(0';p,2)e™0=) (6.162)

Each component of (6.159) and (6.160) may be expressed in terms of one of the

functions

f(0'p,¢ — ¢') = eFhorsin’ cos(9-¢") (6.163)
fe(8';p,6 — ¢') = cos(d — ¢') f(8'; p, 6 — ¢') (6.164)
fo(055p,6 — ¢') = sin(¢ — ¢') f(6'; p, ¢ — ¢') (6.165)

Expanding each of these into a Fourier series in (¢ — ¢') and using the even/odd

properties

$(8) = s(—¢) <= sm(u) = s_m(u) for f, f.

(6.166)
3(¢) = —s(—4) = sm(u) = —s_m(u)  for f,
of the functions f in (6.163) - (6.165) may be expanded as
f(05p,6—¢') = fol€,p) +2 i fm(8*, p) cos[m(d — ¢*)) (6.167)
S8 0.6 = 8) = fl8,0) +2 3 fem(®',p) cos[m(é— ¢)]  (6.168)
m=1

1059, =¢) =2 3 fun(#', ) sinlm( — &) (6.169)
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with the corresponding Fourier coefficients

. 1 T o
(6, p) = ;/ gikopsintcosu oo (mu)du (6.170)
0
fem (8, p) = l ”cos uelkopsind'cosu oo (mu)du 6.171
p rJo
(0, p) = _J Wsin uelkorsind' cosu o1y mu)du (6.172
p * Jo

Comparing these to the Bessel function identities

1
~m _ - jBcosz
7" JIm(B) = 7r/o e cos(maz)dr (6.173)
Jm(B) = —1»/" cos &P cos(mz)dr (6.174)
™ Jo
—%jm.]m(ﬂ) = —%/0 sin ze’? <% sin(mz)dx (6.175)

where the last two are derived from the first by differentiation with respect to 3 and

integration by parts respectively, we conclude that

fm(0',p) = j™ Jm(kopsin 6) (6.176)
fem(8',p) = 5771 I} (kopsin 6°) (6.177)
fam(6',p) = —me(gt,p) (6.178)

Using these, along with (6.163) - (6.165) in (6.159) and (6.160), the Fourier coeffi-

cients of (6.161) and (6.162) are found to be

Tns (075 0,2) = €5 [ fom (6, p) + $fem(6, p)] (6.179)
Tmo(0'; p,2) = 07 [ forn (6, p) cOS 6 — @ fum (6, p) cOs 0 — 5 fn(6°, p) sin o)

(6.180)

or, using (6.166),

Ty(0'50, 6 — ¢',2) = ehoze?” [/323' > fom(0',p)sin[m(s — ¢')]

m=1
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+ ¢ ful¥, p) + 2 i fem (6, p) cos[m(¢ — ¢i)]] (6.181)
m=1
T(05 0,6 — ¢, 2) = eloret

{[J cos 6 [fco(ﬂi,p) +2 i fem(8', p) cos[m(¢ — ¢i)]]

=<3t (2555 fun(8, ) sinfm(s - 0 G

m=1
00

—2sin0*[f0(o*,p 2_: 8, p) cos[m(¢ — ¢')]J}

The modal coefficients %4 and %,y can now be used for determining the harmonic

coefficients of the incident and magnetic fields. For TE, incidence, we have

B = Ty (6.184)
and for T'M, incidence

B =~ (6.185)

By = Ty (6.186)

More explicitly and in component form

€mp = fom (0", p) eFho7cos?" (6.187)
hmg = fom(0', p) cos §° g0z cos?" (6.188)
€mt = fom(6', p) sin v eftozcost” (6.189)

i, = [fm(ﬂi, p)sin @' cosv — fo (6, p) cos &' sin v] gikoz cosd’ (6.190)
for TE, polarization and

€ms = —fom(0', p) cos §' etozcon?" (6.191)

hing = fom (0, p) ePkozcon® (6.192)
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er, = [fc,n(Oi,p) cos @' sinv — f,, (6", p) sin 8’ cos v] gikoz cost! (6.193)

Aot = fam(ai,p) sin v elkozcosé’

(6.194)

for TM, polarization, where v is the angle between the z-axis and the vector { in

the p — z plane. The corresponding potential forms are obtained by multiplying the

previous expressions by R = kgp.

6.4.2 An Electric Dipole Source

An Z-directed electric dipole of moment #4we/k® located at a point zo on the

z-axis is given by [26)]

e R rkr(kr — kzpcos8) , 3 37 J 1
E, = ol R? (E+E_—1)_E R§+1]51n0003¢(6195)
e 7R rkrkzosin®6, 3 3 7 1
Ep = 7l A2 (E+E—1)—(E+—5—l cosﬂ]cosqﬁ (6.196)
-3Ro [
Es= eRO é PRI ]sinqs (6.197)
Ho= 3 Mg sindsing (6.198)
.= = + —|kzysinfsin .
TRy (R T R
Ho= ;[ 4 L) ke - kzo cos ) sin & (6.199)
= ~— + —|(kr — kzg cos 8)sin .
77 @ J Ro _RO R(Q). 0
Hy = 522 [ 4 L] (ke cost — kzo) cos 6 (6.200)
= — + —|(kr cos @ — kzp) cos .
Y) ] J R(] .RO R%. 0
where
Ry = Ic\/r'2 sin? 8 4 (r cos § — zp)? (6.201)

When using this source in connection with the current implementation, the harmonic

coefficients of the fields must first be determined. This may be done rather trivially

by noting the identities

sing =

(6.202)

(6.203)
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Introducing these into (6.195) - (6.200) and comparing with (6.161) and (6.162) we

find (on setting ¢' = 0) that

—jRo _ . .
o = 621]?0 [kr(kr Rl%zocosa) (_:%_*_%—1) —é—%-{—l] sin@ (6.204)
—jRo . 2 . .
€ms = 62;20 [krkz;;)m 6 (% + -%‘i - 1) - (—1‘;—0 + Lz - 1) cos 0] (6.205)
e -JjRo
ems = [ o+ Ro 1] (6.206)
hpr = _JRO [ 7 ]kzo sin (6.207)
mr = Ro Ro .
e[
B = [ 5 Ro]( _ kzocos 6) (6.208)
e JRo
hme = 230 [Ro Ro](kr cos 8§ — kzo) (6.209)

where m = 1. For all other m, the coefficients are zero. Additional field components

needed in the finite element portion of the system are e,,; and A,,, and are given by

Emt = €my COS(0 — v) — empsin(f — v) (6.210)
Rt = Ay cos(f — v) — hpygsin(8 — v) (6.211)
where the identities
7 = fcos(f — v) + fsin(f — v) (6.212)
0 = —isin(6 —v) + f cos(8 — v) (6.213)

have been involved in deriving (6.210) and (6.211).

6.5 Scattered Field Computation

Once the modal coefficients are determined from the solution of (6.76), the goal is
to proceed with the determination of the scattered or radiated field. In the following,
the evaluation of these from a knowledge of the modal scattered field coefficients is

discussed.



131

The scattered fields in the far zone are given by

E*(F) = E4(F)¢ + noHy(7)0 (6.214)

noH (F) = noHy(F)$ — Ey(7)0 (6.215)

These involve the ¢ components of the electric and magnetic fields and these are

related to the modal field components via the Fourier series as

M
Ey(r,0,0) = 2j Z €mo(T, 8) sin(mg) (6.216)
m=1
M
noHj(r,0,8) = hi(r,0) + 2 E hrs(r,0) cos(me) (6.217)
m=1

and that for the §-polarized receiver, and by the series

E4(r,0,¢) = e5(r,0) +

||[\’]§

(r,8) cos(me) (6.218)

noH(r,0,¢6) =25 Z hrs(r,0)sin(ma) (6.219)

for the ¢-polarized receiver. For a unity amplitude incident field, these imply the

radar cross section formulae (2.33)

2

.1 M
e = lim —— lég, + 2 Z_:l Ems(, 6) cos(mg) (6.220)
1|, M 2
g0 = lim —— kg, +2 3 k% 4(r,0) cos(mo) (6.221)
m=1
1 2
056 = lim = 2 Z b2, 4(r,0) sin(me) (6.222)
1 u 2
Te0 = lim —— |2 Z Emg(,0) sin(mg) (6.223)
where
€y = ATT €2, (6.224)

by =4rr kS, (6.225)
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The evaluation of €3, and A%, in the far zone using the near field values.

The Stratton-Chu integral equation used for calculating the scattered fields was

discretized in section 6.3.2. For the potential distribution computed by solving the

system (6.76), and these values are known on any path TI'; passing through the

solution region Q and which encloses the scatterer. By subdividing I’y into Ny

contour (boundary) elements, the scattered field may be expressed in a form similar

to (6.136) as

s
et

¥h
Yht

efn¢=[P¢ P Qs Q:]

where

Ny 2
Py=3 Y {Ps}{

e'—lj 1

Qs = Z Z{Qde

e'=1 =1

Z Z{H

e'=1j=1

Z Z{Q,

e'=1)=1

and in which

e 2 ' , ,
{Pe}; = 7r/ Ne [R'cosv ay _ Rcosvlgm+(Z—Z')sinv'gf,})]dr’

(@15 = 22 [*" {5 [isinvte?] - Gy et Jor
(P} = ’21;1 " NE[i(2 - 296 ar

’

{Qz}§= / N’ |9%) + jmg| v’

(6.226)

(6.227)

(6.228)

(6.229)

(6.230)

(6.231)
(6.232)
(6.233)

(6.234)



133

which must be specialized for far zone (r — oc) computations. In deriving expres-

sions for the far fields, the argument of the Green'’s function is replaced by its usual

far zone approximation

R= \/R2 + R? —2RR'cosu+ (Z — Z')* ~ kor — Z'cos @ — R’ cosusin 6 (6.235)

where

Z = kgrcos 6

R = korsiné

The Green’s function and its derivative may then be written as

g~ e_jkorej(Z'c050+R'cosusin0)
4nr
1 0g J
ROk kor

and when these are used in (6.118) - (6.122), we obtain

(1) e-jkor 1Z'cos @
e—Jkor 1 2! cos
gl ~ m—fm((),R') e?Z s
’ .7 e—jkor / VA [}
~ L (6,R) &7
Im hor dnr fm(0,R') €
' ] C-jkor 2! ¢
)~ = o S O R) 7
' 1 e—jkor )
(2) ~ o — 0 RI 12’ cosb
gm kor 4nmr fom(6, ) €

where

fm(0,R') = 3™ Jm(R sin )

fem(8,R') = j™1J! (R'sin6)

Jom(@, R) = s (0, R)

(6.236)

(6.237)

(6.238)

(6.239)

(6.240)
(6.241)
(6.242)
(6.243)

(6.244)

(6.245)
(6.246)

(6.247)
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element e

=>

-

boundary element ¢’

{R JF+1/2@'

Figure 6.5: The configuration of a typical boundary element e’ passing through tri-
angular element e

Furthermore, substituting (6.236) and (6.237) into (6.231) - (6.234) yields

, —jker  ,A,, , .

{Ps}; ~ —j eZkOr /0 N;(7")[cosOsinv' fo, — sin B cos v’ f,,] €72 <%0 s’ (6.248)
e’ .e—jkor A eIy ot 32 cosb gt

{Q¢}j ~) 2’607‘ ./(; Nj (T )SIHU fam € dr (6249)
e’ 'e—jkor el e/t /Z'cos @ 7t

{Pt}J ~ =J o r A Nj (T )cosofsm e’ dr (6250)

0

e R e r 1 12’ cosd 3.1

QI ~ S [ N; () fem €97 a7 (6.251)

0

If e7,, and h},, are not known on Ty, then they must be computed by numeri-
cally differentiating the potentials for each triangular element traversed by I'y. For
convenience, it is assumed that the €’th boundary element passes through the eth
triangular as indicated in Fig. 6.5 (i.e., the boundary element must begin at one
edge of the triangle and end on another). In this case, e?,, is found by first taking

the dot product of 72’ (the outward normal of I';) with (6.22) to obtain

Jemi = —fmlm - Vpl — R - V] (6.252)
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Since in the eth triangular element

{v:} =JX:N;{¢:}§ (6.253)
we have
Vi{ygl}e = gvzh’f{d'i}j (6.254)
where

o+ B:Z + 7R

e = .255
N; S0 (6.255)
Byt + %6
Nf= L+ —2- 6.256
vy = B2 L (6.256)
Further, on noting the identities
i 3 = cosv' . p' =sinv’
(6.257)
n'-3' = —sinv’ n' - p' = cosv’
the derivatives can be written more explicitly as
. e —pisinv' + yfcosv’ |
Tl’ . Vt{¢e} = Z 2Q . {w } (6258)
J—l
. e B5cosv’ + yisinv'
iviuny = 30 5 e ek (6.259)

J=1

A similar procedure is used for 7' - V,{¢7}¢ and - V,{1{} and substituting these

into (6.252) gives
()

(RY ey = - R, - — [mi"- Vbt - {R), 47 - V53] (6.260)
{R};; j ! A )
(R}, Uik = o [mt Vg + {RYS, 0 - V] (6.261)
[{R}J+]_] 2

where {Rj;l_} is introduced to express the left hand side as an azimuthal potential.
2

The second of these is derived by a similar procedure, or via duality. For the special

case of I'y coinciding with T',, then the €2, and h?,, are computed during the system

solution. Then the need to compute the {— components is unnecessary.
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6.6 Code Validation and Performance

In this section, the numerical implementation of the FE-BI method is evaluated
in terms of storage and computational efficiency and accuracy. Also, the method for
eliminating the boundary integral resonances presented in chapter V is tested here
for spherical enclosures. Finally, the scattering from several structures is presented

for validation purposes.

6.6.1 Storage Efficiency

This implementation of the FE-BI method discussed in this chapter differs from
the two-dimensional FE-BI formulation discussed earlier in that arbitrarily shaped
mesh terminations are allowed. As a result, an increased storage efficiency is not
obtained from the convolutional properties of the boundary integral operator, but is
instead realized by exploiting matrix symmetries. It is, nevertheless, understood that
the controlling factor in the storage of large FE-BI systems is the dense boundary
integral subsystem, which grows as O(n?) for n unknowns on the boundary, while
the interior FE system grows as O(N) for N unknowns in the interior region.

It is possible, however, to choose an enclosure on which some of the integrals
are convolutional. The Green’s function in (6.93) appearing in the integrand of the
integral equations (6.91) is a function of the distance between the source and field

points, which when expressed in cylindrical coordinates takes the form

7~ 71 = \o? + p? — 200 cos(¢ — ) + (z — ') (6.262)

After employing the Fourier series expansion of the field quantities and Green’s func-
tions, the azimuthal dependency is removed and the result is given by (6.128). This

expression is a convolution only on contours parallel to the z-axis. Consequently,
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a suitable enclosure is rectangular in shape, generating a right circular cylinder in
three-dimensional space. Though analogous to the two-dimensional rectangular en-
closure explored in chapter III, the integrals are in the form of convolutions only
when source and observation points lie on the portion of I'; which is parallel to
the z-axis. All remaining terms are considered “cross terms” and must be stored
efficiently, relying on symmetry to achieve this goal.

The discrete version of a typical boundary integral equation block matrix (of Ly,

say) has the form
- -
a1 @12 a3

(6.263)

a1 dz2 aszs

az; asz aszs

where the subscripts of a,, denote the observation on side p and source on side q of
the rectangular boundary (the z-axis is not applicable to the boundary integral). As
a consequence of the convolution, a,; is Toeplitz in form and, effectively, only the
first row need be stored when an FFT is employed to evaluate the associated matrix-
vector products. For az; to dominate the storage requirement of the BI system, the
enclosure must be long with respect to its radius. For scatterers not satisfying this
requirement, the reduction of a,; is not substantial. Consequently, the method was
abandoned in favor of a general conformal boundary.

To determine the storage requirement for a general boundary, it is first noted that
each matrix in the BI subsystem of (6.148) need only be stored once. Additionally,
after examining (6.141) - (6.144) M, and L, are the only symmetric matrices. Thus,
for n nodes on the boundary the storage for the each of the symmetric matrices
is n(n + 1)/2 and that for the unsymmetric matrices is n2. The overall storage

requirement of the BI matrix is then n(3n — 1). Though this continues to be O(n?),
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the constant in front is reduced from 8 to approximately 3. For the particular case
of a purely smooth metallic scatterer, the full storage requirement of the standard
surface integral equation (SIE) for BOR structures is 4n?, slightly less than that of
the FE-BI system. However, for structures such as a corrugated cylinder, n becomes
very large for the SIE but in the case of the FE-BI method, the termination boundary
may be chosen to occupy a minimum path and thereby minimizing the associated
storage requirement.

In passing we note that it is possible to optimize the storage by choosing the
termination boundary far enough from the scatterer so as to reduce the sampling the
requirement of the boundary integral (which grows as O(n?)), but without substan-
tially increasing the storage associated with the additional elements required in the
finite element region (which grows as O(N)). This is particularly useful for structures
containing very thin high contrast material layers, in which case a strictly conformal
boundary would result in a large number of unknowns on the boundary.

For a given amount of data storage space, S [bytes], the maximum allowable

length [ of the termination boundary depends on the uniform sampling rate A as
l=nA (6.264)

The single precision (8 bytes) storage requirement for the discrete boundary integral

thus becomes

I 2
=24 .
S ( A) (6.265)
and then solving for the length,
S
l= — .
A o (6.266)

Thus, if S = 10 megabytes and A = A/20

I~ 32\ (6.267)
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This represents an upper limit on ! given the memory and sampling rate without
regard to the finite element storage nor the overhead associated with the geometry
and solution storage, which mutually grow as O(N). Consequently in practice,n = %

must be reduced until the storage of the entire model is accomodated, a requirement

which depends on the scattering body.

6.6.2 Computational Efficiency and Accuracy

The FE-BI system given by (6.148) is solved via the conjugate gradient method.
It is well known that the rate of convergence is proportional to «2, where « is the
condition number of the matrix. Clearly, those factors which influence x must be
examined, since in part, cpu time of the solver and subsequently the accuracy of the
solution depends on this.

Since the FE-BI system is comprised of two incomplete subsystems, it is expected
that the weakness from each portion contributes to a reduction in k. Among those
due to the finite element subsystem, are the shape and size of the element, and
also the lines of singularity at R = 2 for real &, discussed previously. Elongated
elements yield larger matrix values than an equilateral triangle of the same area, and
the line singularities produce matrix values roughly two orders of magnitude larger
than the average matrix value. The combination of large and small matrix elements
can undermine the condition of the matrix.

Those factors influencing the BI portion are the element size and the total number
of boundary elements. Elements which are very small (< 0.01X) result in subsequent
rows which are nearly equal and give the appearance of a singular matrix. Large
dense systems are known to have a smaller « simply because of the number of matrix

elements.
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Figure 6.6: The mesh used for the frequency sweep of a conducting sphere is shown in
(a) and the expanded region shows the values of ka at which the line sin-
gularity intersects the nodes. The frequency sweep in (b) demonstrates
the inaccuracies associated with the line singularities
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Figure 6.7: A sphere coated with g, = ¢, = 1 — j5 is swept in frequency

The issue of accuracy, which is closely tied to the issue of system condition,
is examined as a function of frequency for two spheres. Each is comprised of a
conductor of radius a with a mesh termination at a, = 1.02¢. The second sphere
contains dielectric material with €, = u, = 1 — j5 in the finite element region. As
seen in Fig. 6.6, there are locations where the solution has a large error with respect
to the exact result [27], plotted as a function of the outer radius normalized to the
free space wavenumber ky. The vertical lines denote the regions of greatest change,
and from (a), it is clear that the edge of an element is nearly parallel to this line. This
problem, discussed previously in section 6.2.3, is due to the fact the matrix elements
are becoming large and the sensitive cancellation required is not occurring accurately.
When a lossy coating is introduced, the line-singularity is no longer present, and as

shown in Fig. 6.7, the results follow quite well with the moment method data.
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6.6.3 Elimination of the Internal Resonance Corruption of the Boundary

Integral

The corruption of the solution due to interior resonances of the boundary integral
perseveres in the three-dimensional case. The approach taken in chapter 3 is also
employed here. It is again shown that for the coated sphere test structure, the
“complexification” of the wavenumber in conjunction with the scattered field FE-BI
formulation successfully removes the resonances. Since the theory surrounding the
method was previously presented, it will not be repeated here.

Consider the conducting sphere of radius a enclosed in a boundary of radius
a, = 1.02a and ¢, = 2 — j4. Shown in Fig. 6.8 is o as a function of ka, of the
outer boundary for axial incidence and observation (thus requiring the solution for
the m = 1 mode). Clearly, the expected resonances indicated by the vertical lines
are present and are evident in the solution for a = 1 by the spiked behavior, except
at koa, ~ 10.6 at which the resonance is shifted due to numerical errors. These are
eliminated by setting k = ako and the results for a = 0.005, « = .007 and a = .01
are presented in the same figure. As seen by these it is clear that the solution is

relatively insensitive to a.

6.6.4 Scattering from Various Test Bodies

To validate the code, bistatic scattering patterns are considered in the four various
sample targets. In each case the radar cross section in (2.33) is computed and the
results are compared to a moment method solution [25, 19]. Most of the cases
considered involve axial incidence (along the z-axis) and in this case TE; and T M,
no longer have meaning. Planes defined by the electric field vector and the z-axis

form the E-plane, and the magnetic field vector and the z-axis form the H-plane.
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Figure 6.8: The axial backscatter cross section is displayed as a function of normal-
ized radius koa,. The structure is a conducting sphere of radius a coated
with a dielectric with ¢, = 2 — j4 has an outer radius of a, = 1.02.
Employing a complex wavenumber k = koa, the resonance behavior is
removed for the complex values in comparison to the a = 1 case
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The patterns shown are computed in these planes.

First we consider the scattering from a coated conducting sphere of radius 0.098m
with a 0.02m coating with ¢, = 2—j4. Fig. 6.9a demonstrates the convergence of the
solution as more Fourier harmonics are summed together, and shown are the partial
sums up to m=10. Fig. 6.9b shows the final converged result of the (a) (plotted on a
scale shifted by -60 degrees to coincide with the pattern due to axial incidence) along
with the axial incident result (requiring only m=1). Only the E-plane patterns were
computed. A comparison to a method of moments result demonstrates agreement.

Next we consider the scattering from a perfectly conducting sphere of radius 1A
as indicated in Fig. 6.10. Both E-plane and H-plane patterns are included and the
comparison with moment method results is favorable.

In Fig. 6.11 is shown the patterns for a 2A x 0.176) perfectly conducting ogive
with a dielectric coating of thickness 0.05\ with ¢, = 2 — j2, shown for an axially
incident plane wave. Both E-plane (TE.) and H-plane (T M,) are shown along with
data generated via the moment method.

Next we consider the case of a coated sphere-capped cone frustum, the mesh of
which is indicated in Fig. 6.12. The structure is 4) in length, the spheres are of
radii 1\ and -’23 and the coating thickness -2’\—0. Additionally, the material is dielectric
with ¢, = 4 — j5. The bistatic cross section computed for this structure for an
axially incident plane wave is indicated for TE, (or E-plane) and TM, (or H-Plane)

incidence in Fig. 6.13. Reference data provided indicates a good agreement.
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Figure 6.9: The bistatic scattering pattern for a coated sphere. (a) Shows the sum-
mation of modes converging to the correct solution for an incidence of
60 degrees. The converged solution for modes 0-10 at 60 degrees (plot-
ted on a scale shifted by -60 degrees to coincide with the pattern due to
axial incidence) shown with the axial incident result and a comparison
to moment method results



146

25.0 [ 1 ¥ 1 I I

20.0 |

15.0

10.0 |

o/A? [dB]

5.0 pos

0.0}

_5.0: 1 I . | - | . | "
00 300 600 90.0 1200 1500 180.0

0 [deg]
Figure 6.10: The bistatic scattering pattern for a perfectly conducting sphere of ra-

dius 1. Both E-plane (TE) and H-plane (T M) are shown along with
data generated via the moment method
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Figure 6.11: The bistatic scattering pattern for a 2X x 0.176) perfectly conducting
with a .0.05) coating with ¢, = 2 — 72 for an axially incident plane
wave. Both E-plane (TE) and H-plane (TM) are shown along with
data generated via the moment method

Figure 6.12: The mesh of the sphere-capped cone frustrum



148

30.0 M | I { 1
20.0
a 10.0
~ i
S
0.0 ‘
_100 [] 1 1 1 1 ]
0.0 30,0 60.0 900 1200 1500 180.0
0 [deg] (¢=0)
(a)
30.0 M | i M | ¥ ] )
200H
)
= 10.0
o .
S
0.0
-10.0 l‘: :“:1 :37‘: 1 1
0.0 30,0 600 900 1200 1500 180.0
0 [deg] (¢=90)
(b)

Figure 6.13: The bistatic scattering pattern is shown for a plane wave axially incident
on the coated sphere-capped cone frustum. Part (a) shows the E-plane
pattern, while (b) demonstrates the H-plane pattern
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6.7 Conclusions

We have presented the finite element - boundary element formulation for axially
symmetric bodies. The storage requirement associated with the boundary integral
was reduced by symmetry considerations. Several patterns were generated to demon-
strate the validity of the method, and the model shortcomings were presented as well.
Also, a method for eliminating the problem of the line singularity inherent in the
CAP finite element formulation was given and was shown to give real matrices for
lossless structures. It should be noted that frequency sweeps and single mode radia-
tion problems make the most efficient use of the employed CG solver. The method
is not well suited, however, to problems incorporating multiple excitations or those

requiring many Fourier modes.



CHAPTER VII

Conclusion

7.1 Summary

In this thesis, the FE-BI technique (presented in general terms in chapter II)
was developed for two-dimensional and axially symmetric structures. The two-
dimensional case was based on the moment-method version developed by Jin [9].
An FE-BI formulation for rectangular enclosures was developed in Chapter 111 and
lead to simple boundary integrals some of which had convolutional form which was
exploited for reducing the memory requirement. In chapter IV, circular and ogival
enclosures were considered. For the circular boundary, the boundary integral was
entirely convolutional in form and an O(N) storage requirement was thus achieved
at all times. It was shown that circular enclosures are consequently preferred for
storage efficiency if the structure’s outer boundary does not substantially deviate
from a circle.

In chapter VI, the FE-BI formulation was developed for axially symmetric struc-
tures. The finite element method for this problem was based on the CAP equations
for generating the FE matrix system, and a boundary integral equation was used for
the boundary condition on an arbitrarily shaped mesh termination boundary. Conse-

quently the boundary integrals were no longer convolutional and a storage reduction
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was, instead, achieved by exploiting certain symmetry properties of the boundary
integral subsystem. Also, a new method was presented for circumventing the singu-
larity problem associated with the CAP equations in the finite element portion of
the system.

A method was developed in chapter V for eliminating the internal resonance cor-
ruption of the solution, a difficulty found with most boundary integral formulations.
These resonances correspond to the eigenvalues of the integral operator, and may
be also viewed as the cut-off frequencies of a resonator with conducting walls of the
same shape as the mesh termination boundary. Because the eigenvalues become very
closely spaced for electrically large structures, any scattering computations become
unreliable unless the resonances are suppressed.

In summary, specific contributions of this work include the development and
implementation of the FE-BI for rectangular, circular and ogival boundaries as de-
scribed in chapters III and IV in a manner taking advantage of storage reduction
schemes. A new method was also presented for suppressing resonance corruptions
existing in almost all implementations employing some form of a boundary integral
equation over a closed surface or contour. This method involved the introduction of
a complex wavenumber and was demonstrated for both 2-D and axially symmetric
bodies. The implementation of the FE-BI method for axially symmetric structures
as described in chapter VI was for the most part new and incorporated a scheme
for treating the line singularity associated with the CAP equations. This resulted in
real matrices for lossless scatterers, a property consistent with 2-D and 3-D imple-

mentations of the finite element method.
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7.2 Future Work

The FE-BI technique presented in this work remains a promising technique for
computing the scattering from ever larger structures. However, as the structure
increases in size, so does the condition number of the resulting system due in part
to its size. To reduce the number of unknowns, higher order basis functions must
be used. For electromagnetic scattering, bases formed with hierarchical functions [5]
show promise. Instead of standard functions, in which each undetermined coefficient
corresponds to an unknown field quantity, those associated with the hierarchical
function are comprised of both field quantities and field errors. For instance, a
quadratic hierarchical function for a one-dimensional element takes the form

2
¢=2Nf($)¢§+af(w) (7.1)

5=
where f(z) is an arbitrary quadratic function, and the coefficient o is proportion to
the deviation of the linear approximation to the quadratic one. Clearly, as higher
order terms are added to the sum in (7.1), the smaller the coefficients become. Fur-
thermore, the quadratic function f(z) may be chosen to be approximately orthogonal
to polynomials of different order. Thus, in a finite element implementation, the off
diagonal elements may become very small increasing the diagonal dominance of the

matrix and leading to better matrix conditioning.

The above idea can be extended to include functions other than polynomials. The
physical optics solution could be employed as the fundamental solution and linear (or
higher order polynomials) functions could then be employed as correcting functions.
That is, the unknown coefficients in the solution would then be the deviation of the
Physical optics solution from the actual one. This could consequently aid in reducing

the number of unknowns, particularly if the original approximation was reasonably
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good. Note that this technique is applicable for the discretization of the boundary

integral and finite element equations.
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